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Preface

What I hear, I forget; What I see, I remember; What I do, I understand.
—Confucius (551–479 B.C.)

It is commonly argued that enlightened people of the twenty-first century
ought to familiarize themselves with the key ideas underlying BANG: Bits,
Atoms, Neurons, and Genes. Although science has been remarkably
successful in uncovering their basic operating systems, it is quite possible
that we will never fully grasp how atoms, neurons, and genes actually work.
Bits, however, and computing systems at large, entail a consoling
exception: in spite of their fantastic complexity, one can completely
understand how modern computers work, and how they are built. So, as we
gaze with awe at the BANG around us, it is a pleasing thought that at least
one field in this quartet can be fully laid bare to human comprehension.

Indeed, in the early days of computers, any curious person who cared to
do so could gain a gestalt understanding of how the machine works. The
interactions between hardware and software were simple and transparent
enough to produce a coherent picture of the computer’s operations. Alas, as
digital technologies have become increasingly more complex, this clarity is
all but lost: the most fundamental ideas and techniques in computer science
—the very essence of the field—are now hidden under many layers of
obscure interfaces and proprietary implementations. An inevitable
consequence of this complexity has been specialization: the study of
applied computer science became a pursuit of many niche courses, each
covering a single aspect of the field.

We wrote this book because we felt that many computer science students
are missing the forest for the trees. The typical learner is marshaled through



a series of courses in programming, theory, and engineering, without
pausing to appreciate the beauty of the picture at large. And the picture at
large is such that hardware, software, and application systems are tightly
interrelated through a hidden web of abstractions, interfaces, and contract-
based implementations.

Failure to see this intricate enterprise in the flesh leaves many learners
and professionals with an uneasy feeling that, well, they don’t fully
understand what’s going on inside computers. This is unfortunate, since
computers are the most important machines in the twenty-first century.

We believe that the best way to understand how computers work is to
build one from scratch. With that in mind, we came up with the following
idea: Let’s specify a simple but sufficiently powerful computer system, and
invite learners to build its hardware platform and software hierarchy from
the ground up. And while we are at it, let’s do it right. We are saying this
because building a general-purpose computer from first principles is a huge
enterprise.

Therefore, we identified a unique educational opportunity to not only
build the thing, but also illustrate, in a hands-on fashion, how to effectively
plan and manage large-scale hardware and software development projects.
In addition, we sought to demonstrate the thrill of constructing, through
careful reasoning and modular planning, fantastically complex and useful
systems from first principles.

The outcome of this effort became what is now known colloquially as
Nand to Tetris: a hands-on journey that starts with the most elementary
logic gate, called Nand, and ends up, twelve projects later, with a general-
purpose computer system capable of running Tetris, as well as any other
program that comes to your mind. After designing, building, redesigning,
and rebuilding the computer system several times ourselves, we wrote this
book, explaining how any learner can do the same. We also launched the
www.nand2tetris.org website, making all our project materials and software
tools freely available to anyone who wants to learn, or teach, Nand to Tetris
courses.

We are gratified to say that the response has been overwhelming. Today,
Nand to Tetris courses are taught in numerous universities, high schools,
coding boot camps, online platforms, and hacker clubs around the world.
The book and our online courses became highly popular, and thousands of

http://www.nand2tetris.org/


learners—ranging from high school students to Google engineers—
routinely post reviews describing Nand to Tetris as their best educational
experience ever. As Richard Feynman famously said: “What I cannot
create, I do not understand.” Nand to Tetris is all about understanding
through creation. Apparently, people connect passionately to this maker
mentality.

Since the publication of the book’s first edition, we received numerous
questions, comments, and suggestions. As we addressed these issues by
modifying our online materials, a gap developed between the web-based
and the book-based versions of Nand to Tetris. In addition, we felt that
many book sections could benefit from more clarity and a better
organization. So, after delaying this surgery as much as we could, we
decided to roll up our sleeves and write a second edition, leading to the
present book. The remainder of this preface describes this new edition,
ending with a section that compares it to the previous one.

Scope

The book exposes learners to a significant body of computer science
knowledge, gained through a series of hardware and software construction
tasks. In particular, the following topics are illustrated in the context of
hands-on projects:

Hardware: Boolean arithmetic, combinational logic, sequential logic,
design and implementation of logic gates, multiplexers, flip-flops,
registers, RAM units, counters, Hardware Description Language (HDL),
chip simulation, verification and testing.
Architecture: ALU/CPU design and implementation, clocks and cycles,
addressing modes, fetch and execute logic, instruction set, memory-
mapped input/output.
Low-level languages: Design and implementation of a simple machine
language (binary and symbolic), instruction sets, assembly programming,
assemblers.



Virtual machines: Stack-based automata, stack arithmetic, function call
and return, handling recursion, design and implementation of a simple
VM language.
High-level languages: Design and implementation of a simple object-
based, Java-like language: abstract data types, classes, constructors,
methods, scoping rules, syntax and semantics, references.
Compilers: Lexical analysis, parsing, symbol tables, code generation,
implementation of arrays and objects, two-tier compilation.
Programming: Implementation of an assembler, virtual machine, and
compiler, following supplied APIs. Can be done in any programming
language.
Operating systems: Design and implementation of memory management,
math library, input/output drivers, string processing, textual output,
graphical output, high-level language support.
Data structures and algorithms: Stacks, hash tables, lists, trees, arithmetic
algorithms, geometric algorithms, running time considerations.
Software engineering: Modular design, the interface/implementation
paradigm, API design and documentation, unit testing, proactive test
planning, quality assurance, programming at the large.

A unique feature of Nand to Tetris is that all these topics are presented
cohesively, with a clear, over-arching purpose: building a modern computer
system from the ground up. In fact, this has been our topic selection
criterion: the book focuses on the minimal set of topics necessary for
building a general-purpose computer system, capable of running programs
written in a high-level, object-based language. As it turns out, this critical
set includes most of the fundamental concepts and techniques, as well as
some of the most beautiful ideas, in applied computer science.

Courses

Nand to Tetris courses are typically cross-listed for both undergraduate and
graduate students, and are highly popular among self-learners. Courses
based on this book are “perpendicular” to the typical computer science



curriculum and can be taken at almost any point during the program. Two
natural slots are CS-2—an introductory yet post-programming course—and
CS-99—a synthesis course coming at the end of the program. The former
course entails a forward-looking, systems-oriented introduction to applied
computer science, while the latter is an integrative, project-based course
that fills gaps left by previous courses.

Another increasingly popular slot is a course that combines, in one
framework, key topics from traditional computer architecture courses and
compilation courses. Whichever purpose they are made to serve, Nand to
Tetris courses go by many names, including Elements of Computing
Systems, Digital Systems Construction, Computer Organization, Let’s Build
a Computer, and, of course, Nand to Tetris.

The book and the projects are highly modular, starting from the top
division into Part I: Hardware and Part II: Software, each comprising six
chapters and six projects. Although we recommend going through the full
experience, it is entirely possible to learn each of the two parts separately.
The book and the projects can support two independent courses, each six to
seven weeks long, a typical semester-long course, or two semester-long
courses, depending on topic selection and pace of study.

The book is completely self-contained: all the necessary knowledge for
building the hardware and software systems described in the book is given
in its chapters and projects. Part I: Hardware requires no prerequisite
knowledge, making projects 1–6 accessible to any student and self-learner.
Part II: Software and projects 7–12 require programming (in any high-level
language) as a prerequisite.

Nand to Tetris courses are not restricted to computer science majors.
Rather, they lend themselves to learners from any discipline who seek to
gain a hands-on understanding of hardware architectures, operating
systems, compilation, and software engineering—all in one course. Once
again, the only prerequisite (for part II) is programming. Indeed, many
Nand to Tetris students are nonmajors who took an introduction to
computer science course and now wish to learn more computer science
without committing themselves to a multicourse program. Many other
learners are software developers who wish to “go below,” understand how
the enabling technologies work, and become better high-level programmers.



Following the acute shortage of developers in the hardware and software
industries, there is a growing demand for compact and focused programs in
applied computer science. These often take the form of coding boot camps
and clusters of online courses designed to prepare learners for the job
market without going through the full gamut of an academic degree. Any
such solid program must offer, at minimum, working knowledge of
programming, algorithms, and systems. Nand to Tetris is uniquely
positioned to cover the systems element of such programs, in the
framework of one course. Further, the Nand to Tetris projects provide an
attractive means for synthesizing, and putting to practice, much of the
algorithmic and programmatic knowledge learned in other courses.

Resources

All the necessary tools for building the hardware and software systems
described in the book are supplied freely in the Nand to Tetris software
suite. These include a hardware simulator, a CPU emulator, a VM emulator
(all in open source), tutorials, and executable versions of the assembler,
virtual machine, compiler, and operating system described in the book. In
addition, the www.nand2tetris.org website includes all the project materials
—about two hundred test programs and test scripts—allowing incremental
development and unit testing of each one of the twelve projects. The
software tools and project materials can be used as is on any computer
running Windows, Linux, or macOS.

Structure

Part I: Hardware consists of chapters 1–6. Following an introduction to
Boolean algebra, chapter 1 starts with the elementary Nand gate and builds
a set of elementary logic gates on top of it. Chapter 2 presents
combinational logic and builds a set of adders, leading up to an ALU.
Chapter 3 presents sequential logic and builds a set of registers and memory
devices, leading up to a RAM. Chapter 4 discusses low-level programming
and specifies a machine language in both its symbolic and binary forms.

http://www.nand2tetris.org/


Chapter 5 integrates the chips built in chapters 1–3 into a hardware
architecture capable of executing programs written in the machine language
presented in chapter 4. Chapter 6 discusses low-level program translation,
culminating in the construction of an assembler.

Part II: Software consists of chapters 7–12 and requires programming
background (in any language) at the level of introduction to computer
science courses. Chapters 7–8 present stack-based automata and describe
the construction of a JVM-like virtual machine. Chapter 9 presents an
object-based, Java-like high-level language. Chapters 10–11 discuss parsing
and code generation algorithms and describe the construction of a two-tier
compiler. Chapter 12 presents various memory management, algebraic, and
geometric algorithms and describes the implementation of an operating
system that puts them to practice. The OS is designed to close gaps between
the high-level language implemented in part II and the hardware platform
built in part I.

The book is based on an abstraction-implementation paradigm. Each
chapter starts with an Introduction describing relevant concepts and a
generic hardware or software system. The next section is always
Specification, describing the system’s abstraction, that is, the various
services that it is expected to deliver, one way or another. Having presented
the what, each chapter proceeds to discuss how the abstraction can be
realized, leading to a proposed Implementation section. The next section is
always Project, providing step-by-step guidelines, testing materials, and
software tools for building and unit-testing the system described in the
chapter. The closing Perspective section highlights noteworthy issues left
out from the chapter.

Projects

The computer system described in the book is for real. It is designed to be
built, and it works! The book is geared toward active readers who are
willing to get their hands dirty and build the computer from the ground up.
If you’ll take the time and effort to do so, you will gain a depth of
understanding and a sense of accomplishment unmatched by mere reading.



The hardware devices built in projects 1, 2, 3, and 5 are implemented
using a simple Hardware Description Language (HDL) and simulated on a
supplied software-based hardware simulator, which is exactly how
hardware architects work in industry. Projects 6, 7, 8, 10, and 11 (assembler,
virtual machine , and compiler ) can be written in any programming
language. Project 4 is written in the computer’s assembly language, and
projects 9 and 12 (a simple computer game and a basic operating system)
are written in Jack—the Java-like high-level language for which we build a
compiler in chapters 10 and 11.

There are twelve projects altogether. On average, each project entails a
weekly homework load in a typical rigorous university-level course. The
projects are self-contained and can be done (or skipped) in any desired
order. The full Nand to Tetris experience entails doing all the projects in
their order of appearance, but this is only one option.

Is it possible to cover so much ground in a one-semester course? The
answer is yes, and the proof is in the pudding: more than 150 universities
teach semester-long Nand to Tetris courses. The student satisfaction is
exceptional, and Nand to Tetris MOOCs are routinely listed at the top of the
top-rated lists of online course. One reason why learners respond to our
methodology is focus. Except for obvious cases, we pay no attention to
optimization, leaving this important subject to other, more specific courses.
In addition, we allow students to assume error-free inputs. This eliminates
the need to write code for handling exceptions, making the software
projects significantly more focused and manageable. Dealing with incorrect
input is of course critically important, but this skill can be honed elsewhere,
for example, in project extensions and in dedicated programming and
software design courses.

The Second Edition

Although Nand to Tetris was always structured around two themes, the
second edition makes this structure explicit: The book is now divided into
two distinct and standalone parts, Part I: Hardware and Part II: Software.
Each part consists of six chapters and six projects and begins with a newly
written introduction that sets the stage for the part’s chapters. Importantly,



the two parts are independent of each other. Thus, the new book structure
lends itself well to quarter-long as well as semester-long courses.

In addition to the two new introduction chapters, the second edition
features four new appendices. Following the requests of many learners,
these new appendices give focused presentations of various technical topics
that, in the first edition, were scattered across the chapters. Another new
appendix provides a formal proof that any Boolean function can be built
from Nand operators, adding a theoretical perspective to the applied
hardware construction projects. Many new sections, figures, and examples
were added.

All the chapters and project materials were rewritten with an emphasis on
separating abstraction from implementation—a major theme in Nand to
Tetris. We took special care to add examples and sections that address the
thousands of questions that were posted over the years in Nand to Tetris
Q&A forums.
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I       Hardware

The true voyage of discovery consists not of going to new places, but of having a new pair of eyes.
—Marcel Proust (1871–1922)

This book is a voyage of discovery. You are about to learn three things: how
computer systems work, how to break complex problems into manageable
modules, and how to build large-scale hardware and software systems. This
will be a hands-on journey, as you create a complete and working computer
system from the ground up. The lessons you will learn, which are far more
important than the computer itself, will be gained as side effects of these
constructions. According to the psychologist Carl Rogers, “The only kind
of learning which significantly influences behavior is self-discovered or
self-appropriated—truth that has been assimilated in experience.” This
introduction chapter sketches some of the discoveries, truths, and
experiences that lie ahead.

Hello, World Below

If you have some programming experience, you’ve probably encountered
something like the program below early in your training. And if you
haven’t, you can still guess what the program is doing: it displays the text
Hello World and terminates. This particular program is written in Jack—a
simple, Java-like high-level language:



Trivial programs like Hello World are deceptively simple. Did you ever stop to
think about what it takes to actually run such a program on a computer?
Let’s look under the hood. For starters, note that the program is nothing
more than a sequence of plain characters, stored in a text file. This
abstraction is a complete mystery for the computer, which understands only
instructions written in machine language. Thus, if we want to execute this
program, the first thing we must do is parse the string of characters of
which the high-level code is made, uncover its semantics—figure out what
the program seeks to do—and then generate low-level code that reexpresses
this semantics using the machine language of the target computer. The
result of this elaborate translation process, known as compilation, will be an
executable sequence of machine language instructions.

Of course, machine language is also an abstraction—an agreed upon set
of binary codes. To make this abstraction concrete, it must be realized by
some hardware architecture. And this architecture, in turn, is implemented
by a certain set of chips—registers, memory units, adders, and so on. Now,
every one of these hardware devices is constructed from lower-level,
elementary logic gates. And these gates, in turn, can be built from primitive
gates like Nand and Nor. These primitive gates are very low in the
hierarchy, but they, too, are made of several switching devices, typically
implemented by transistors. And each transistor is made of—Well, we
won’t go further than that, because that’s where computer science ends and
physics starts.

You may be thinking: “On my computer, compiling and running
programs is much easier—all I have to do is click this icon or write that
command!” Indeed, a modern computer system is like a submerged iceberg:
most people get to see only the top, and their knowledge of computing
systems is sketchy and superficial. If, however, you wish to explore beneath
the surface, then Lucky You! There’s a fascinating world down there, made



of some of the most beautiful stuff in computer science. An intimate
understanding of this underworld is what separates naïve programmers from
sophisticated developers—people who can create complex hardware and
software technologies. And the best way to understand how these
technologies work—and we mean understand them in the marrow of your
bones—is to build a complete computer system from the ground up.

Nand to Tetris

Assuming that we want to build a computer system from the ground up,
which specific computer should we build? As it turns out, every general-
purpose computer—every PC, smartphone, or server—is a Nand to Tetris
machine. First, all computers are based, at bottom, on elementary logic
gates, of which Nand is the most widely used in industry (we’ll explain
what exactly is a Nand gate in chapter 1). Second, every general-purpose
computer can be programmed to run a Tetris game, as well as any other
program that tickles your fancy. Thus, there is nothing unique about either
Nand or Tetris. It is the word to in Nand to Tetris that turns this book into
the magical journey that you are about to undertake: going all the way from
a heap of barebone switching devices to a machine that engages the mind
with text, graphics, animation, music, video, analysis, simulation, artificial
intelligence, and all the capabilities that we came to expect from general-
purpose computers. Therefore, it doesn’t really matter which specific
hardware platform and software hierarchy we will build, so long as they
will be based on the same ideas and techniques that characterize all
computing systems out there.

Figure I.1 describes the key milestones in the Nand to Tetris road map.
Starting at the bottom tier of the figure, any general-purpose computer has
an architecture that includes a ALU (Arithmetic Logic Unit) and a RAM
(Random Access Memory). All ALU and RAM devices are made of
elementary logic gates. And, surprisingly and fortunately, as we will soon
see, all logic gates can be made from Nand gates alone. Focusing on the
software hierarchy, all high-level languages rely on a suite of translators
(compiler/interpreter, virtual machine, assembler) for reducing high-level
code all the way down to machine-level instructions. Some high-level



languages are interpreted rather than compiled, and some don’t use a virtual
machine, but the big picture is essentially the same. This observation is a
manifestation of a fundamental computer science principle, known as the
Church-Turing conjecture: at bottom, all computers are essentially
equivalent.

Figure I.1    Major modules of a typical computer system, consisting of a hardware platform and a
software hierarchy. Each module has an abstract view (also called the module’s interface) and an
implementation. The right-pointing arrows signify that each module is implemented using abstract
building blocks from the level below. Each circle represents a Nand to Tetris project and chapter—
twelve projects and chapters altogether.

We make these observations in order to emphasize the generality of our
approach: the challenges, insights, tips, tricks, techniques, and terminology
that you will encounter in this book are exactly the same as those
encountered by practicing hardware and software engineers. In that respect,
Nand to Tetris is a form of initiation: if you’ll manage to complete the
journey, you will gain an excellent basis for becoming a hardcore computer
professional yourself.

So, which specific hardware platform, and which specific high-level
language, shall we build in Nand to Tetris? One possibility is building an
industrial-strength, widely used computer model and writing a compiler for
a popular high-level language. We opted against these choices, for three
reasons. First, computer models come and go, and hot programming



languages give way to new ones. Therefore, we didn’t want to commit to
any particular hardware/software configuration. Second, the computers and
languages that are used in practice feature numerous details that have little
instructive value, yet take ages to implement. Finally, we sought a hardware
platform and a software hierarchy that could be easily controlled,
understood, and extended. These considerations led to the creation of Hack,
the computer platform built in part I of the book, and Jack, the high-level
language implemented in part II.

Typically, computer systems are described top-down, showing how high-
level abstractions can be reduced to, or realized by, simpler ones. For
example, we can describe how binary machine instructions executing on the
computer architecture are broken into micro-codes that travel through the
architecture’s wires and end up manipulating the lower-level ALU and
RAM chips. Alternatively, we can go bottom-up, describing how the ALU
and RAM chips are judiciously designed to execute micro-codes that, taken
together, form binary machine instructions. Both the top-down and the
bottom-up approaches are enlightening, each giving a different perspective
on the system that we are about to build.

In figure I.1, the direction of the arrows suggests a top-down orientation.
For any given pair of modules, there is a right-pointing arrow connecting
the higher module with the lower one. The meaning of this arrow is precise:
it implies that the higher-level module is implemented using abstract
building blocks from the level below. For example, a high-level program is
implemented by translating each high-level statement into a set of abstract
VM commands. And each VM command, in turn, is translated further into a
set of abstract machine language instructions. And so it goes. The
distinction between abstraction and implementation plays a major role in
systems design, as we now turn to discuss.

Abstraction and Implementation

You may wonder how it is humanly possible to construct a complete
computer system from the ground up, starting with nothing more than
elementary logic gates. This must be a humongous enterprise! We deal with
this complexity by breaking the system into modules. Each module is



described separately, in a dedicated chapter, and built separately, in a
standalone project. You might then wonder, how is it possible to describe
and construct these modules in isolation? Surely they are interrelated! As
we will demonstrate throughout the book, a good modular design implies
just that: you can work on the individual modules independently, while
completely ignoring the rest of the system. In fact, if the system is well
designed, you can build these modules in any desired order, and even in
parallel, if you work in a team.

The cognitive ability to “divide and conquer” a complex system into
manageable modules is empowered by yet another cognitive gift: our ability
to discern between the abstraction and the implementation of each module.
In computer science, we take these words concretely: abstraction describes
what the module does, and implementation describes how it does it. With
this distinction in mind, here is the most important rule in system
engineering: when using a module as a building block—any module—you
are to focus exclusively on the module’s abstraction, ignoring completely its
implementation details.

For example, let’s focus on the bottom tier of figure I.1, starting at the
“computer architecture” level. As seen in the figure, the implementation of
this architecture uses several building blocks from the level below,
including a Random Access Memory. The RAM is a remarkable device. It
may contain billions of registers, yet any one of them can be accessed
directly, and almost instantaneously. Figure I.1 informs us that the computer
architect should use this direct-access device abstractly, without paying any
attention to how it is actually realized. All the work, cleverness, and drama
that went into implementing the direct-access RAM magic—the how—
should be completely ignored, since this information is irrelevant in the
context of using the RAM for its effect.

Going one level downward in figure I.1, we now find ourselves in the
position of having to build the RAM chip. How should we go about it?
Following the right-pointing arrow, we see that the RAM implementation
will be based on elementary logic gates and chips from the level below. In
particular, the RAM storage and direct-access capabilities will be realized
using registers and multiplexers, respectively. And once again, the same
abstraction-implementation principle kicks in: we will use these chips as
abstract building blocks, focusing on their interfaces, and caring naught



about their implementations. And so it goes, all the way down to the Nand
level.

To recap, whenever your implementation uses a lower-level hardware or
software module, you are to treat this module as an off-the-shelf, black box
abstraction: all you need is the documentation of the module’s interface,
describing what it can do, and off you go. You are to pay no attention
whatsoever to how the module performs what its interface advertises. This
abstraction-implementation paradigm helps developers manage complexity
and maintain sanity: by dividing an overwhelming system into well-defined
modules, we create manageable chunks of implementation work and
localize error detection and correction. This is the most important design
principle in hardware and software construction projects.

Needless to say, everything in this story hinges on the intricate art of
modular design: the human ability to separate the problem at hand into an
elegant collection of well-defined modules, each having a clear interface,
each representing a reasonable chunk of standalone implementation work,
each lending itself to an independent unit-testing program. Indeed, modular
design is the bread and butter of applied computer science: every system
architect routinely defines abstractions, sometimes referred to as modules or
interfaces, and then implements them, or asks other people to implement
them. The abstractions are often built layer upon layer, resulting in higher
and higher levels of functionality. If the system architect designs a good set
of modules, the implementation work will flow like clear water; if the
design is slipshod, the implementation will be doomed.

Modular design is an acquired art, honed by seeing and implementing
many well-designed abstractions. That’s exactly what you are about to
experience in Nand to Tetris: you will learn to appreciate the elegance and
functionality of hundreds of hardware and software abstractions. You will
then be guided how to implement each one of these abstractions, one step at
a time, creating bigger and bigger chunks of functionality. As you push
ahead in this journey, going from one chapter to the next, it will be thrilling
to look back and appreciate the computer system that is gradually taking
shape in the wake of your efforts.



Methodology

The Nand to Tetris journey entails building a hardware platform and a
software hierarchy. The hardware platform is based on a set of about thirty
logic gates and chips, built in part I of the book. Every one of these gates
and chips, including the topmost computer architecture, will be built using a
Hardware Description Language. The HDL that we will use is documented
in appendix 2 and can be learned in about one hour. You will test the
correctness of your HDL programs using a software-based hardware
simulator running on your PC. This is exactly how hardware engineers
work in practice: they build and test chips using software-based simulators.
When they are satisfied with the simulated performance of the chips, they
ship their specifications (HDL programs) to a fabrication company.
Following optimization, the HDL programs become the input of robotic
arms that build the hardware in silicon.

Moving up on the Nand to Tetris journey, in part II of the book we will
build a software stack that includes an assembler, a virtual machine, and a
compiler. These programs can be implemented in any high-level
programming language. In addition, we will build a basic operating system,
written in Jack.

You may wonder how it is possible to develop these ambitious projects in
the scope of one course or one book. Well, in addition to modular design,
our secret sauce is reducing design uncertainty to an absolute minimum.
We’ll provide elaborate scaffolding for each project, including detailed
APIs, skeletal programs, test scripts, and staged implementation guidelines.

All the software tools that are necessary for completing projects 1–12 are
available in the Nand to Tetris software suite, which can be downloaded
freely from www.nand2tetris.org. These include a hardware simulator, a
CPU emulator, a VM emulator, and executable versions of the hardware
chips, assembler, compiler, and OS. Once you download the software suite
to your PC, all these tools will be at your fingertips.

The Road Ahead

http://www.nand2tetris.org/


The Nand to Tetris journey entails twelve hardware and software
construction projects. The general direction of development across these
projects, as well as the book’s table of contents, imply a bottom-up journey:
we start with elementary logic gates and work our way upward, leading to a
high-level, object-based programming language. At the same time, the
direction of development within each project is top-down. In particular,
whenever we present a hardware or software module, we will always start
with an abstract description of what the module is designed to do and why it
is needed. Once you understand the module’s abstraction (a rich world in its
own right), you’ll proceed to implement it, using abstract building blocks
from the level below.

So here, finally, is the grand plan of part I of our tour de force. In chapter
1 we start with a single logic gate—Nand—and build from it a set of
elementary and commonly used logic gates like And, Or, Xor, and so on. In
chapters 2 and 3 we use these building blocks for constructing an
Arithmetic Logic Unit and memory devices, respectively. In chapter 4 we
pause our hardware construction journey and introduce a low-level machine
language in both its symbolic and binary forms. In chapter 5 we use the
previously built ALU and memory units for building a Central Processing
Unit (CPU) and a Random Access Memory (RAM). These devices will
then be integrated into a hardware platform capable of running programs
written in the machine language presented in chapter 4. In chapter 6 we
describe and build an assembler, which is a program that translates low-
level programs written in symbolic machine language into executable
binary code. This will complete the construction of the hardware platform.
This platform will then become the point of departure for part II of the
book, in which we’ll extend the barebone hardware with a modern software
hierarchy consisting of a virtual machine, a compiler, and an operating
system.

We hope that we managed to convey what lies ahead, and that you are
eager to get started on this grand voyage of discovery. So, assuming that
you are ready and set, let the countdown start: 1, 0, Go!



 

1       Boolean Logic

Such simple things, and we make of them something so complex it defeats us, Almost.
—John Ashbery (1927–2017)

Every digital device—be it a personal computer, a cell phone, or a network
router—is based on a set of chips designed to store and process binary
information. Although these chips come in different shapes and forms, they
are all made of the same building blocks: elementary logic gates. The gates
can be physically realized using many different hardware technologies, but
their logical behavior, or abstraction, is consistent across all
implementations.

In this chapter we start out with one primitive logic gate—Nand—and
build all the other logic gates that we will need from it. In particular, we
will build Not, And, Or, and Xor gates, as well as two gates named
multiplexer and demultiplexer (the function of all these gates is described
below). Since our target computer will be designed to operate on 16-bit
values, we will also build 16-bit versions of the basic gates, like Not16,
And16, and so on. The result will be a rather standard set of logic gates,
which will be later used to construct our computer’s processing and
memory chips. This will be done in chapters 2 and 3, respectively.

The chapter starts with the minimal set of theoretical concepts and
practical tools needed for designing and implementing logic gates. In
particular, we introduce Boolean algebra and Boolean functions and show
how Boolean functions can be realized by logic gates. We then describe
how logic gates can be implemented using a Hardware Description
Language (HDL) and how these designs can be tested using hardware
simulators. This introduction will carry its weight throughout part I of the



book, since Boolean algebra and HDL will come into play in every one of
the forthcoming hardware chapters and projects.

1.1    Boolean Algebra

Boolean algebra manipulates two-state binary values that are typically
labeled true/false, 1/0, yes/no, on/off, and so forth. We will use 1 and 0. A
Boolean function is a function that operates on binary inputs and returns
binary outputs. Since computer hardware is based on representing and
manipulating binary values, Boolean functions play a central role in the
specification, analysis, and optimization of hardware architectures.

Boolean operators: Figure 1.1 presents three commonly used Boolean
functions, also known as Boolean operators. These functions are named
And, Or, and Not, also written using the notation , , and , or 

 and ¬x, respectively. Figure 1.2 gives the definition of all the
possible Boolean functions that can be defined over two variables, along
with their common names. These functions were constructed systematically
by enumerating all the possible combinations of values spanned by two
binary variables. Each operator has a conventional name that seeks to
describe its underlying semantics. For example, the name of the Nand
operator is shorthand for Not-And, coming from the observation that Nand
(x, y) is equivalent to Not (And (x, y)). The Xor operator—shorthand for
exclusive or—evaluates to 1 when exactly one of its two variables is 1. The
Nor gate derives its name from Not-Or. All these gate names are not
terribly important.

Figure 1.1    Three elementary Boolean functions.



Figure 1.2    All the Boolean functions of two binary variables. In general, the number of Boolean
functions spanned by n binary variables (here ) is  (that’s a lot of Boolean functions).

Figure 1.2 begs the question: What makes And, Or, and Not more
interesting, or privileged, than any other subset of Boolean operators? The
short answer is that indeed there is nothing special about And, Or, and Not.
A deeper answer is that various subsets of logical operators can be used for
expressing any Boolean function, and {And, Or, Not} is one such subset. If
you find this claim impressive, consider this: any one of these three basic
operators can be expressed using yet another operator—Nand. Now, that’s
impressive! It follows that any Boolean function can be realized using Nand



gates only. Appendix 1, which is an optional reading, provides a proof of
this remarkable claim.

Boolean Functions

Every Boolean function can be defined using two alternative
representations. First, we can define the function using a truth table, as we
do in figure 1.3. For each one of the 2n possible tuples of variable values 

 (here ), the table lists the value of f . In addition to this
data-driven definition, we can also define Boolean functions using Boolean
expressions, for example,  And Not (z).

Figure 1.3    Truth table and functional definitions of a Boolean function (example).

How can we verify that a given Boolean expression is equivalent to a
given truth table? Let’s use figure 1.3 as an example. Starting with the first
row, we compute f (0, 0, 0), which is (0 Or 0) And Not (0). This expression
evaluates to 0, the same value listed in the truth table. So far so good. A
similar equivalence test can be applied to every row in the table—a rather
tedious affair. Instead of using this laborious bottom-up proof technique, we
can prove the equivalence top-down, by analyzing the Boolean expression
(x Or y) And Not (z). Focusing on the left-hand side of the And operator, we
observe that the overall expression evaluates to 1 only when ((x is 1) Or (y



is 1)). Turning to the right-hand side of the And operator, we observe that
the overall expression evaluates to 1 only when (z is 0). Putting these two
observations together, we conclude that the expression evaluates to 1 only
when (((x is 1) Or (y is 1)) And (z is 0)). This pattern of 0’s and 1’s occurs
only in rows 3, 5, and 7 of the truth table, and indeed these are the only
rows in which the table’s rightmost column contains a 1.

Truth Tables and Boolean Expressions

Given a Boolean function of n variables represented by a Boolean
expression, we can always construct from it the function’s truth table. We
simply compute the function for every set of values (row) in the table. This
construction is laborious, and obvious. At the same time, the dual
construction is not obvious at all: Given a truth table representation of a
Boolean function, can we always synthesize from it a Boolean expression
for the underlying function? The answer to this intriguing question is yes. A
proof can be found in appendix 1.

When it comes to building computers, the truth table representation, the
Boolean expression, and the ability to construct one from the other are all
highly relevant. For example, suppose that we are called to build some
hardware for sequencing DNA data and that our domain expert biologist
wants to describe the sequencing logic using a truth table. Our job is to
realize this logic in hardware. Taking the given truth table data as a point of
departure, we can synthesize from it a Boolean expression that represents
the underlying function. After simplifying the expression using Boolean
algebra, we can proceed to implement it using logic gates, as we’ll do later
in the chapter. To sum up, a truth table is often a convenient means for
describing some states of nature, whereas a Boolean expression is a
convenient formalism for realizing this description in silicon. The ability to
move from one representation to the other is one of the most important
practices of hardware design.

We note in passing that although the truth table representation of a
Boolean function is unique, every Boolean function can be represented by
many different yet equivalent Boolean expressions, and some will be
shorter and easier to work with. For example, the expression (Not (x And y)
And (Not (x) Or y) And (Not (y) Or y)) is equivalent to the expression Not



(x). We see that the ability to simplify a Boolean expression is the first step
toward hardware optimization. This is done using Boolean algebra and
common sense, as illustrated in appendix 1.

1.2    Logic Gates

A gate is a physical device that implements a simple Boolean function.
Although most digital computers today use electricity to realize gates and
represent binary data, any alternative technology permitting switching and
conducting capabilities can be employed. Indeed, over the years, many
hardware implementations of Boolean functions were created, including
magnetic, optical, biological, hydraulic, pneumatic, quantum-based, and
even domino-based mechanisms (many of these implementations were
proposed as whimsical “can do” feats). Today, gates are typically
implemented as transistors etched in silicon, packaged as chips. In Nand to
Tetris we use the words chip and gate interchangeably, tending to use the
latter for simple instances of the former.

The availability of alternative switching technologies, on the one hand,
and the observation that Boolean algebra can be used to abstract the
behavior of logic gates, on the other, is extremely important. Basically, it
implies that computer scientists don’t have to worry about physical artifacts
like electricity, circuits, switches, relays, and power sources. Instead,
computer scientists are content with the abstract notions of Boolean algebra
and gate logic, trusting blissfully that someone else—physicists and
electrical engineers—will figure out how to actually realize them in
hardware. Hence, primitive gates like those shown in figure 1.4 can be
viewed as black box devices that implement elementary logical operations
in one way or another—we don’t care how. The use of Boolean algebra for
analyzing the abstract behavior of logic gates was articulated in 1937 by
Claude Shannon, leading to what is sometimes described as the most
important M.Sc. thesis in computer science.



Figure 1.4    Standard gate diagrams of three elementary logic gates.

Primitive and Composite Gates

Since all logic gates have the same input and output data types (0’s and 1’s),
they can be combined, creating composite gates of arbitrary complexity. For
example, suppose we are asked to implement the three-way Boolean
function And (a, b, c), which returns 1 when every one of its inputs is 1,
and 0 otherwise. Using Boolean algebra, we can begin by observing that 

 or, using prefix notation, And  (And (a, b), c).
Next, we can use this result to construct the composite gate depicted in
figure 1.5.

Figure 1.5    Composite implementation of a three-way And gate. The rectangular dashed outline
defines the boundary of the gate interface.

We see that any given logic gate can be viewed from two different
perspectives: internal and external. The right side of figure 1.5 gives the
gate’s internal architecture, or implementation, whereas the left side shows
the gate interface, namely, its input and output pins and the behavior that it
exposes to the outside world. The internal view is relevant only to the gate
builder, whereas the external view is the right level of detail for designers
who wish to use the gate as an abstract, off-the-shelf component, without
paying attention to its implementation.

Let us consider another logic design example: Xor. By definition, Xor (a,
b) is 1 exactly when either a is 1 and b is 0 or a is 0 and b is 1. Said
otherwise, Xor , And (Not (a), b)). This definition is
implemented in the logic design shown in figure 1.6.



Figure 1.6    Xor gate interface (left) and a possible implementation (right).

Note that the interface of any given gate is unique: there is only one way
to specify it, and this is normally done using a truth table, a Boolean
expression, or a verbal specification. This interface, however, can be
realized in many different ways, and some will be more elegant and
efficient than others. For example, the Xor implementation shown in figure
1.6 is one possibility; there are more efficient ways to realize Xor, using
less logic gates and less inter-gate connections. Thus, from a functional
standpoint, the fundamental requirement of logic design is that the gate
implementation will realize its stated interface, one way or another. From
an efficiency standpoint, the general rule is to try to use as few gates as
possible, since fewer gates imply less cost, less energy, and faster
computation.

To sum up, the art of logic design can be described as follows: Given a
gate abstraction (also referred to as specification, or interface), find an
efficient way to implement it using other gates that were already
implemented.

1.3    Hardware Construction

We are now in a position to discuss how gates are actually built. Let us start
with an intentionally naïve example. Suppose we open a chip fabrication
shop in our home garage. Our first contract is to build a hundred Xor gates.
Using the order’s down payment, we purchase a soldering gun, a roll of
copper wire, and three bins labeled “And gates,” “Or gates,” and “Not
gates,” each containing many identical copies of these elementary logic
gates. Each of these gates is sealed in a plastic casing that exposes some



input and output pins, as well as a power supply port. Our goal is to realize
the gate diagram shown in figure 1.6 using this hardware.

We begin by taking two And gates, two Not gates, and one Or gate and
mounting them on a board, according to the figure’s layout. Next, we
connect the chips to one another by running wires among them and
soldering the wire ends to the respective input/output pins.

Now, if we follow the gate diagram carefully, we will end up having
three exposed wire ends. We then solder a pin to each one of these wire
ends, seal the entire device (except for the three pins) in a plastic casing,
and label it “Xor.” We can repeat this assembly process many times over. At
the end of the day, we can store all the chips that we’ve built in a new bin
and label it “Xor gates.” If we wish to construct some other chips in the
future, we’ll be able to use these Xor gates as black box building blocks,
just as we used the And, Or, and Not gates before.

As you have probably sensed, the garage approach to chip production
leaves much to be desired. For starters, there is no guarantee that the given
chip diagram is correct. Although we can prove correctness in simple cases
like Xor, we cannot do so in many realistically complex chips. Thus, we
must settle for empirical testing: build the chip, connect it to a power
supply, activate and deactivate the input pins in various configurations, and
hope that the chip’s input/output behavior delivers the desired specification.
If the chip fails to do so, we will have to tinker with its physical structure—
a rather messy affair. Further, even if we do come up with a correct and
efficient design, replicating the chip assembly process many times over will
be a time-consuming and error-prone affair. There must be a better way!

1.3.1    Hardware Description Language

Today, hardware designers no longer build anything with their bare hands.
Instead, they design the chip architecture using a formalism called
Hardware Description Language, or HDL. The designer specifies the chip
logic by writing an HDL program, which is then subjected to a rigorous
battery of tests. The tests are carried out virtually, using computer
simulation: A special software tool, called a hardware simulator, takes the
HDL program as input and creates a software representation of the chip
logic. Next, the designer can instruct the simulator to test the virtual chip on



various sets of inputs. The simulator computes the chip outputs, which are
then compared to the desired outputs, as mandated by the client who
ordered the chip built.

In addition to testing the chip’s correctness, the hardware designer will
typically be interested in a variety of parameters such as speed of
computation, energy consumption, and the overall cost implied by the
proposed chip implementation. All these parameters can be simulated and
quantified by the hardware simulator, helping the designer optimize the
design until the simulated chip delivers desired cost/performance levels.

Thus, using HDL, one can completely plan, debug, and optimize an
entire chip before a single penny is spent on physical production. When the
performance of the simulated chip satisfies the client who ordered it, an
optimized version of the HDL program can become the blueprint from
which many copies of the physical chip can be stamped in silicon. This
final step in the chip design process—from an optimized HDL program to
mass production—is typically outsourced to companies that specialize in
robotic chip fabrication, using one switching technology or another.

Example: Building an Xor Gate: The remainder of this section gives a
brief introduction to HDL, using an Xor gate example; a detailed HDL
specification can be found in appendix 2.

Let us focus on the bottom left of figure 1.7. An HDL definition of a chip
consists of a header section and a parts section. The header section
specifies the chip interface, listing the chip name and the names of its input
and output pins. The PARTS section describes the chip-parts from which the
chip architecture is made. Each chip-part is represented by a single
statement that specifies the part name, followed by a parenthetical
expression that specifies how it is connected to other parts in the design.
Note that in order to write such statements, the HDL programmer must have
access to the interfaces of all the underlying chip-parts: the names of their
input and output pins, as well as their intended operation. For example, the
programmer who wrote the HDL program listed in figure 1.7 must have
known that the input and output pins of the Not gate are named in and out
and that those of the And and Or gates are named a, b, and out. (The APIs of
all the chips used in Nand to Tetris are listed in appendix 4).



Figure 1.7    Gate diagram and HDL implementation of the Boolean function Xor  (And
(a, Not (b)), And (Not (a), b)), used as an example. A test script and an output file generated by the
test are also shown. Detailed descriptions of HDL and the testing language are given in appendices 2
and 3, respectively.

Inter-part connections are specified by creating and connecting internal
pins, as needed. For example, consider the bottom of the gate diagram,
where the output of a Not gate is piped into the input of a subsequent And
gate. The HDL code describes this connection by the pair of statements
Not(…, out=nota) and And(a=nota, …). The first statement creates an internal
pin (outbound connection) named nota and pipes the value of the out pin into
it. The second statement pipes the value of nota into the a input of an And
gate. Two comments are in order here. First, internal pins are created
“automatically” the first time they appear in an HDL program. Second, pins
may have an unlimited fan-out. For example, in figure 1.7, each input is
simultaneously fed into two gates. In gate diagrams, multiple connections
are described by drawing them, creating forked patterns. In HDL programs,
the existence of forks is inferred from the code.

The HDL that we use in Nand to Tetris has a similar look and feel to
industrial strength HDLs but is much simpler. Our HDL syntax is mostly
self-explanatory and can be learned by seeing a few examples and
consulting appendix 2, as needed.



Testing

Rigorous quality assurance mandates that chips be tested in a specific,
replicable, and well-documented fashion. With that in mind, hardware
simulators are typically designed to run test scripts, written in a scripting
language. The test script listed in figure 1.7 is written in the scripting
language understood by the Nand to Tetris hardware simulator.

Let us give a brief overview of this test script. The first two lines instruct
the simulator to load the Xor.hdl program and get ready to print the values of
selected variables. Next, the script lists a series of testing scenarios. In each
scenario, the script instructs the simulator to bind the chip inputs to selected
data values, compute the resulting output, and record the test results in a
designated output file. In the case of simple gates like Xor, one can write an
exhaustive test script that enumerates all the input values that the gate can
possibly get. In this case, the resulting output file (right side of figure 1.7)
provides a complete empirical test that the chip is well behaving. The
luxury of such certitude is not feasible in more complex chips, as we will
see later.

Readers who plan to build the Hack computer will be pleased to know
that all the chips that appear in the book are accompanied by skeletal HDL
programs and supplied test scripts, available in the Nand to Tetris software
suite. Unlike HDL, which must be learned in order to complete the chip
specifications, there is no need to learn our testing language. At the same
time, you have to be able to read and understand the supplied test scripts.
The scripting language is described in appendix 3, which can be consulted
on a need-to-know basis.

1.3.2    Hardware Simulation

Writing and debugging HDL programs is similar to conventional software
development. The main difference is that instead of writing code in a high-
level language, we write it in HDL, and instead of compiling and running
the code, we use a hardware simulator to test it. The hardware simulator is
a computer program that knows how to parse and interpret HDL code, turn
it into an executable representation, and test it according to supplied test
scripts. There exist many such commercial hardware simulators in the



market. The Nand to Tetris software suite includes a simple hardware
simulator that provides all the necessary tools for building, testing, and
integrating all the chips presented in the book, leading up to the
construction of a general-purpose computer. Figure 1.8 illustrates a typical
chip simulation session.

Figure 1.8    A screenshot of simulating an Xor chip in the supplied hardware simulator (other
versions of this simulator may have a slightly different GUI). The simulator state is shown just after
the test script has completed running. The pin values correspond to the last simulation step 
Not shown in this screenshot is a compare file that lists the expected output of the simulation
specified by this particular test script. Like the test script, the compare file is typically supplied by the
client who wants the chip built. In this particular example, the output file generated by the simulation
(bottom right of the figure) is identical to the supplied compare file.

1.4    Specification

We now turn to specify a set of logic gates that will be needed for building
the chips of our computer system. These gates are ordinary, each designed
to carry out a common Boolean operation. For each gate, we’ll focus on the
gate interface (what the gate is supposed to do), delaying implementation
details (how to build the gate’s functionality) to a later section.



1.4.1    Nand

The starting point of our computer architecture is the Nand gate, from
which all other gates and chips will be built. The Nand gate realizes the
following Boolean function:

Or, using API style:

Throughout the book, chips are specified using the API style shown
above. For each chip, the API specifies the chip name, the names of its
input and output pins, the chip’s intended function or operation, and
optional comments.

1.4.2    Basic Logic Gates

The logic gates that we present here are typically referred to as basic, since
they come into play in the construction of more complex chips. The Not,
And, Or, and Xor gates implement classical logical operators, and the
multiplexer and demultiplexer gates provide means for controlling flows of
information.

Not: Also known as inverter, this gate outputs the opposite value of its
input’s value. Here is the API:



And: Returns 1 when both its inputs are 1, and 0 otherwise:

Or: Returns 1 when at least one of its inputs is 1, and 0 otherwise:

Xor: Also known as exclusive or, this gate returns 1 when exactly one of its
inputs is 1, and 0 otherwise:

Multiplexer: A multiplexer is a three-input gate (see figure 1.9). Two input
bits, named a and b, are interpreted as data bits, and a third input bit, named
sel, is interpreted as a selection bit. The multiplexer uses sel to select and
output the value of either a or b. Thus, a sensible name for this device could
have been selector. The name multiplexer was adopted from
communications systems, where extended versions of this device are used
for serializing (multiplexing) several input signals over a single
communications channel.



Figure 1.9    Multiplexer. The table at the top right is an abbreviated version of the truth table.

Demultiplexer: A demultiplexer performs the opposite function of a
multiplexer: it takes a single input value and routes it to one of two possible
outputs, according to a selector bit that selects the destination output. The
other output is set to 0. Figure 1.10 gives the API.



Figure 1.10    Demultiplexer.

1.4.3    Multi-Bit Versions of Basic Gates

Computer hardware is often designed to process multi-bit values—for
example, computing a bitwise And function on two given 16-bit inputs.
This section describes several 16-bit logic gates that will be needed for
constructing our target computer platform. We note in passing that the
logical architecture of these n-bit gates is the same, irrespective of n’s value
(e.g., 16, 32, or 64 bits). HDL programs treat multi-bit values like single-bit
values, except that the values can be indexed in order to access individual
bits. For example, if in and out represent 16-bit values, then out  sets
the 3rd bit of out to the value of the 5th bit of in. The bits are indexed from
right to left, the rightmost bit being the 0’th bit and the leftmost bit being
the 15’th bit (in a 16-bit setting).

Multi-bit Not: An n-bit Not gate applies the Boolean operation Not to
every one of the bits in its n-bit input:

Multi-bit And: An n-bit And gate applies the Boolean operation And to
every respective pair in its two n-bit inputs:

Multi-bit Or: An n-bit Or gate applies the Boolean operation Or to every
respective pair in its two n-bit inputs:



Multi-bit multiplexer: An n-bit multiplexer operates exactly the same as a
basic multiplexer, except that its inputs and output are n-bits wide:

1.4.4    Multi-Way Versions of Basic Gates

Logic gates that operate on one or two inputs have natural generalization to
multi-way variants that operate on more than two inputs. This section
describes a set of multi-way gates that will be used subsequently in various
chips in our computer architecture.

Multi-way Or: An m-way Or gate outputs 1 when at least one of its m input
bits is 1, and 0 otherwise. We will need an 8-way variant of this gate:

Multi-way/Multi-bit multiplexer: An m-way n-bit multiplexer selects one
of its m n-bit inputs, and outputs it to its n-bit output. The selection is
specified by a set of k selection bits, where  Here is the API of a 4-
way multiplexer:



Our target computer platform requires two variants of this chip: a 4-way 16-
bit multiplexer and an 8-way 16-bit multiplexer:

Multi-way/Multi-bit demultiplexer: An m-way n-bit demultiplexer routes
its single n-bit input to one of its m n-bit outputs. The other outputs are set
to 0. The selection is specified by a set of k selection bits, where 
Here is the API of a 4-way demultiplexer:



Our target computer platform requires two variants of this chip: a 4-way 1-
bit demultiplexer and an 8-way 1-bit demultiplexer:

1.5    Implementation

The previous section described the specifications, or interfaces, of a family
of basic logic gates. Having described the what, we now turn to discuss the
how. In particular, we’ll focus on two general approaches to implementing
logic gates: behavioral simulation and hardware implementation. Both
approaches play important roles in all our hardware construction projects.

1.5.1    Behavioral Simulation

The chip descriptions presented thus far are strictly abstract. It would have
been nice if we could experiment with these abstractions hands-on, before
setting out to build them in HDL. How can we possibly do so?

Well, if all we want to do is interact with the chips’ behavior, we don’t
have to go through the trouble of building them in HDL. Instead, we can
opt for a much simpler implementation, using conventional programming.
For example, we can use some object-oriented language to create a set of
classes, each implementing a generic chip. We can write class constructors



for creating chip instances and eval methods for evaluating their logic, and
we can have the classes interact with each other so that high-level chips can
be defined in terms of lower-level ones. We could then add a nice graphical
user interface that enables putting different values in the chip inputs,
evaluating their logic, and observing the chip outputs. This software-based
technique, called behavioral simulation, makes a lot of sense. It enables
experimenting with chip interfaces before starting the laborious process of
building them in HDL.

The Nand to Tetris hardware simulator provides exactly such a service.
In addition to simulating the behavior of HDL programs, which is its main
purpose, the simulator features built-in software implementations of all the
chips built in the Nand to Tetris hardware projects. The built-in version of
each chip is implemented as an executable software module, invoked by a
skeletal HDL program that provides the chip interface. For example, here is
the HDL program that implements the built-in version of the Xor chip:

Compare this to the HDL program listed in figure 1.7. First, note that
regular chips and built-in chips have precisely the same interface. Thus,
they provide exactly the same functionality. In the built-in implementation
though, the PARTS section is replaced with the single statement BUILTIN Xor.
This statement informs the simulator that the chip is implemented by
Xor.class. This class file, like all the Java class files that implement built-in
chips, is located in the folder nand2tetris/tools/builtIn.

We note in passing that realizing logic gates using high-level
programming is not difficult, and that’s another virtue of behavioral
simulation: it’s inexpensive and quick. At some point, of course, hardware
engineers must do the real thing, which is implementing the chips not as



software artifacts but rather as HDL programs that can be committed to
silicon. That’s what we’ll do next.

1.5.2    Hardware Implementation

This section gives guidelines on how to implement the fifteen logic gates
described in this chapter. As a rule in this book, our implementation
guidelines are intentionally brief. We give just enough insights to get
started, leaving you the pleasure of discovering the rest of the gate
implementations yourself.

Nand: Since we decided to base our hardware on elementary Nand gates,
we treat Nand as a primitive gate whose functionality is given externally.
The supplied hardware simulator features a built-in implementation of
Nand, and thus there is no need to implement it.

Not: Can be implemented using a single Nand gate. Tip: Inspect the Nand
truth table, and ask yourself how the Nand inputs can be arranged so that a
single input signal, 0, will cause the Nand gate to output 1, and a single
input signal, 1, will cause it to output 0.

And: Can be implemented from the two previously discussed gates.

Or / Xor: The Boolean function Or can be defined using the Boolean
functions And and Not. The Boolean function Xor can be defined using
And, Not, and Or.

Multiplexer / Demultiplexer: Can be implemented using previously built
gates.

Multi-bit Not / And / Or gates: Assuming that you’ve already built the
basic versions of these gates, the implementation of their n-ary versions is a
matter of arranging arrays of n basic gates and having each gate operate
separately on its single-bit inputs. The resulting HDL code will be
somewhat boring and repetitive (using copy-paste), but it will carry its
weight when these multi-bit gates are used in the construction of more
complex chips, later in the book.



Multi-bit multiplexer: The implementation of an n-ary multiplexer is a
matter of feeding the same selection bit to every one of n binary
multiplexers. Again, a boring construction task resulting in a very useful
chip.

Multi-way gates: Implementation tip: Think forks.

1.5.3    Built-In Chips

As we pointed out when we discussed behavioral simulation, our hardware
simulator provides software-based, built-in implementations of most of the
chips described in the book. In Nand to Tetris, the most celebrated built-in
chip is of course Nand: whenever you use a Nand chip-part in an HDL
program, the hardware simulator invokes the built-in tools/builtIn/Nand.hdl
implementation. This convention is a special case of a more general chip
invocation strategy: whenever the hardware simulator encounters a chip-
part, say, Xxx, in an HDL program, it looks up the file Xxx.hdl in the current
folder; if the file is found, the simulator evaluates its underlying HDL code.
If the file is not found, the simulator looks it up in the tools/builtIn folder. If
the file is found there, the simulator executes the chip’s built-in
implementation; otherwise, the simulator issues an error message and
terminates the simulation.

This convention comes in handy. For example, suppose you began
implementing a Mux.hdl program, but, for some reason, you did not complete
it. This could be an annoying setback, since, in theory, you cannot continue
building chips that use Mux as a chip-part. Fortunately, and actually by
design, this is where built-in chips come to the rescue. All you have to do is
rename your partial implementation Mux1.hdl, for example. Each time the
hardware simulator is called to simulate the functionality of a Mux chip-
part, it will fail to find a Mux.hdl file in the current folder. This will cause
behavioral simulation to kick in, forcing the simulator to use the built-in
Mux version instead. Exactly what we want! At a later stage you may want
to go back to Mux1.hdl and resume working on its implementation. At this
point you can restore its original file name, Mux.hdl, and continue from
where you left off.



1.6    Project

This section describes the tools and resources needed for completing project
1 and gives recommended implementation steps and tips.

Objective: Implement all the logic gates presented in the chapter. The only
building blocks that you can use are primitive Nand gates and the
composite gates that you will gradually build on top of them.

Resources: We assume that you’ve already downloaded the Nand to Tetris
zip file, containing the book’s software suite, and that you’ve extracted it
into a folder named nand2tetris on your computer. If that is the case, then the
nand2tetris/tools folder on your computer contains the hardware simulator
discussed in this chapter. This program, along with a plain text editor, are
the only tools needed for completing project 1 as well as all the other
hardware projects described in the book.

The fifteen chips mentioned in this chapter, except for Nand, should be
implemented in the HDL language described in appendix 2. For each chip
Xxx, we provide a skeletal Xxx.hdl program (sometimes called a stub file)
with a missing implementation part. In addition, for each chip we provide
an Xxx.tst script that tells the hardware simulator how to test it, along with
an Xxx.cmp compare file that lists the correct output that the supplied test is
expected to generate. All these files are available in your
nand2tetris/projects/01 folder. Your job is to complete and test all the Xxx.hdl
files in this folder. These files can be written and edited using any plain text
editor.

Contract: When loaded into the hardware simulator, your chip design
(modified .hdl program), tested on the supplied .tst file, should produce the
outputs listed in the supplied .cmp file. If the actual outputs generated by the
simulator disagree with the desired outputs, the simulator will stop the
simulation and produce an error message.

Steps: We recommend proceeding in the following order:



0.  The hardware simulator needed for this project is available in
nand2tetris/tools.

1.  Consult appendix 2 (HDL), as needed.
2.  Consult the Hardware Simulator Tutorial (available at www.nand2tetris

.org), as needed.
3.  Build and simulate all the chips listed in nand2tetris/projects/01.

General Implementation Tips

(We use the terms gate and chip interchangeably.)

Each gate can be implemented in more than one way. The simpler the
implementation, the better. As a general rule, strive to use as few chip-
parts as possible.
Although each chip can be implemented directly from Nand gates only,
we recommend always using composite gates that were already
implemented. See the previous tip.
There is no need to build “helper chips” of your own design. Your HDL
programs should use only the chips mentioned in this chapter.
Implement the chips in the order in which they appear in the chapter. If,
for some reason, you don’t complete the HDL implementation of some
chip, you can still use it as a chip-part in other HDL programs. Simply
rename the chip file, or remove it from the folder, causing the simulator to
use its built-in version instead.

A web-based version of project 1 is available at www.nand2tetris.org.

1.7    Perspective

This chapter specified a set of basic logic gates that are widely used in
computer architectures. In chapters 2 and 3 we will use these gates for
building our processing and storage chips, respectively. These chips, in
turn, will be later used for constructing the central processing unit and the
memory devices of our computer.

http://www.nand2tetris.org/
http://www.nand2tetris.org/


Although we have chosen to use Nand as our basic building block, other
logic gates can be used as possible points of departure. For example, you
can build a complete computer platform using Nor gates only or,
alternatively, a combination of And, Or, and Not gates. These constructive
approaches to logic design are theoretically equivalent, just like the same
geometry can be founded on alternative sets of agreed-upon axioms. In
principle, if electrical engineers or physicists can come up with efficient and
low-cost implementations of logic gates using any technology that they see
fit, we will happily use them as primitive building blocks. The reality,
though, is that most computers are built from either Nand or Nor gates.

Throughout the chapter, we paid no attention to efficiency and cost
considerations, such as energy consumption or the number of wire
crossovers implied by our HDL programs. Such considerations are critically
important in practice, and a great deal of computer science and technology
expertise focuses on optimizing them. Another issue we did not address is
physical aspects, for example, how primitive logic gates can be built from
transistors embedded in silicon or from other switching technologies. There
are of course several such implementation options, each having its own
characteristics (speed, energy consumption, production cost, and so on).
Any nontrivial coverage of these issues requires venturing into areas
outside computer science, like electrical engineering and solid-state
physics.

The next chapter describes how bits can be used to represent binary
numbers and how logic gates can be used to realize arithmetic operations.
These capabilities will be based on the elementary logic gates built in this
chapter.



 

2       Boolean Arithmetic

Counting is the religion of this generation, its hope and salvation.
—Gertrude Stein (1874–1946)

In this chapter we build a family of chips designed to represent numbers
and perform arithmetic operations. Our starting point is the set of logic
gates built in chapter 1, and our ending point is a fully functional Arithmetic
Logic Unit. The ALU will later become the computational centerpiece of
the Central Processing Unit (CPU)—the chip that executes all the
instructions handled by the computer. Hence, building the ALU is an
important milestone in our Nand to Tetris journey.

As usual, we approach this task gradually, starting with a background
section that describes how binary codes and Boolean arithmetic can be
used, respectively, to represent and add signed integers. The Specification
section presents a succession of adder chips designed to add two bits, three
bits, and pairs of n-bit binary numbers. This sets the stage for the ALU
specification, which is based on a surprisingly simple logic design. The
Implementation and Project sections provide tips and guidelines on how to
build the adder chips and the ALU using HDL and the supplied hardware
simulator.

2.1    Arithmetic Operations

General-purpose computer systems are required to perform at least the
following arithmetic operations on signed integers:



addition
sign conversion
subtraction
comparison
multiplication
division

We’ll start by developing gate logic that carries out addition and sign
conversion. Later, we will show how the other arithmetic operations can be
implemented from these two building blocks.

In mathematics as well as in computer science, addition is a simple
operation that runs deep. Remarkably, all the functions performed by digital
computers—not only arithmetic operations—can be reduced to adding
binary numbers. Therefore, constructive understanding of binary addition
holds the key to understanding many fundamental operations performed by
the computer’s hardware.

2.2    Binary Numbers

When we are told that a certain code, say, 6083, represents a number using
the decimal system, then, by convention, we take this number to be:

Each digit in the decimal code contributes a value that depends on the base
10 and on the digit’s position in the code. Suppose now that we are told that
the code 10011 represents a number using base 2, or binary representation.
To compute the value of this number, we follow exactly the same
procedure, using base 2 instead of base 10:



Inside computers, everything is represented using binary codes. For
example, when we press the keyboard keys labeled 1, 9, and Enter in
response to “Give an example of a prime number,” what ends up stored in
the computer’s memory is the binary code 10011. When we ask the computer
to display this value on the screen, the following process ensues. First, the
computer’s operating system calculates the decimal value that 10011
represents, which happens to be 19. After converting this integer value to
the two characters 1 and 9, the OS looks up the current font and gets the two
bitmap images used for rendering these characters on the screen. The OS
then causes the screen driver to turn on and off the relevant pixels, and,
don’t hold your breath—the whole thing lasts a tiny fraction of a second—
we finally see the image 19 appear on the screen.

In chapter 12 we’ll develop an operating system that carries out such
rendering operations, among many other low-level services. For now,
suffice it to observe that the decimal representation of numbers is a human
indulgence explained by the obscure fact that, at some point in ancient
history, humans decided to represent quantities using their ten fingers, and
the habit stuck. From a mathematical perspective, the number ten is utterly
uninteresting, and, as far as computers go, is a complete nuisance.
Computers handle everything in binary and care naught about decimal. Yet
since humans insist on dealing with numbers using decimal codes,
computers have to work hard behind the scenes to carry out binary-to-
decimal and decimal-to-binary conversions whenever humans want to see,
or supply, numeric information. At all other times, computers stick to
binary.

Fixed word size: Integer numbers are of course unbounded: for any given
number x there are integers that are less than x and integers that are greater
than x. Yet computers are finite machines that use a fixed word size for
representing numbers. Word size is a common hardware term used for
specifying the number of bits that computers use for representing a basic
chunk of information—in this case, integer values. Typically, 8-, 16-, 32-,
or 64-bit registers are used for representing integers.1 The fixed word size
implies that there is a limit on the number of values that these registers can
represent.



For example, suppose we use 8-bit registers for representing integers.
This representation can code  different things. If we wish to represent
only nonnegative integers, we can assign 00000000 for representing 0,
00000001 for representing 1, 00000010 for representing 2, 00000011 for
representing 3, all the way up to assigning 11111111 for representing 255. In
general, using n bits we can represent all the nonnegative integers ranging
from 0 to .

What about representing negative numbers using binary codes? Later in
the chapter we’ll present a technique that meets this challenge in a most
elegant and satisfying way.

And what about representing numbers that are greater than, or less than,
the maximal and minimal values permitted by the fixed register size? Every
high-level language provides abstractions for handling numbers that are as
large or as small as we can practically want. These abstractions are typically
implemented by lashing together as many n-bit registers as necessary for
representing the numbers. Since executing arithmetic and logical operations
on multi-word numbers is a slow affair, it is recommended to use this
practice only when the application requires processing extremely large or
extremely small numbers.

2.3    Binary Addition

A pair of binary numbers can be added bitwise from right to left, using the
same decimal addition algorithm learned in elementary school. First, we
add the two rightmost bits, also called the least significant bits (LSB) of the
two binary numbers. Next, we add the resulting carry bit to the sum of the
next pair of bits. We continue this lockstep process until the two left most
significant bits (MSB) are added. Here is an example of this algorithm in
action, assuming that we use a fixed word size of 4 bits:



If the most significant bitwise addition generates a carry of 1, we have
what is known as overflow. What to do with overflow is a matter of
decision, and ours is to ignore it. Basically, we are content to guarantee that
the result of adding any two n-bit numbers will be correct up to n bits. We
note in passing that ignoring things is perfectly acceptable as long as one is
clear and forthcoming about it.

2.4    Signed Binary Numbers

An n-bit binary system can code 2n different things. If we have to represent
signed (positive and negative) numbers in binary code, a natural solution is
to split the available code space into two subsets: one for representing
nonnegative numbers, and the other for representing negative numbers.
Ideally, the coding scheme should be chosen such that the introduction of
signed numbers would complicate the hardware implementation of
arithmetic operations as little as possible.

Over the years, this challenge has led to the development of several
coding schemes for representing signed numbers in binary code. The
solution used today in almost all computers is called the two’s complement
method, also known as radix complement. In a binary system that uses a
word size of n bits, the two’s complement binary code that represents
negative x is taken to be the code that represents . For example, in a 4-
bit binary system,  is represented using the binary code associated with 

, which happens to be 1001. Recalling that  is represented by 0111,
we see that  (ignoring the overflow bit). Figure 2.1 lists all
the signed numbers represented by a 4-bit system using the two’s
complement method.



Figure 2.1    Two’s complement representation of signed numbers, in a 4-bit binary system.

An inspection of figure 2.1 suggests that an n-bit binary system with
two’s complement representation has the following attractive properties:

The system codes  signed numbers, ranging from  to 
The code of any nonnegative number begins with a 0.
The code of any negative number begins with a 1.
To obtain the binary code of  from the binary code of x, leave all the
least significant 0-bits and the first least significant 1-bit of x intact, and
flip all the remaining bits (convert 0’s to 1’s and vice versa). Alternatively,
flip all the bits of x and add 1 to the result.



A particularly attractive feature of the two’s complement representation is
that subtraction is handled as a special case of addition. To illustrate,
consider  Noting that this is equivalent to  and following figure
2.1, we proceed to compute  The result is 1110, which indeed is
the binary code of . Here is another example: To compute  we
add  obtaining the sum 11011. Ignoring the overflow bit, we get
1011, which is the binary code of 

We see that the two’s complement method enables adding and subtracting
signed numbers using nothing more than the hardware required for adding
nonnegative numbers. As we will see later in the book, every arithmetic
operation, from multiplication to division to square root, can be
implemented reductively using binary addition. So, on the one hand, we
observe that a huge range of computer capabilities rides on top of binary
addition, and on the other hand, we observe that the two’s complement
method obviates the need for special hardware for adding and subtracting
signed numbers. Taking these two observations together, we are compelled
to conclude that the two’s complement method is one of the most
remarkable and unsung heroes of applied computer science.

2.5    Specification

We now turn to specifying a hierarchy of chips, starting with simple adders
and culminating with an Arithmetic Logic Unit (ALU). As usual in this
book, we focus first on the abstract (what the chips are designed to),
delaying implementation details (how they do it) to the next section. We
cannot resist reiterating, with pleasure, that thanks to the two’s complement
method we don’t have to say anything special about handling signed
numbers. All the arithmetic chips that we’ll present work equally well on
nonnegative, negative, and mixed-sign numbers.

2.5.1    Adders

We’ll focus on the following hierarchy of adders:

Half-adder: designed to add two bits



Full-adder: designed to add three bits
Adder: designed to add two n-bit numbers

We’ll also specify a special-purpose adder, called an incrementer, designed
to add 1 to a given number. (The names half-adder and full-adder derive
from the implementation detail that a full-adder chip can be realized from
two half-adders, as we’ll see later in the chapter.)

Half-adder: The first step on our road to adding binary numbers is adding
two bits. Let us treat the result of this operation as a 2-bit number, and call
its right and left bits sum and carry, respectively. Figure 2.2 presents a chip
that carries out this addition operation.

Figure 2.2    Half-adder, designed to add 2 bits.

Full-adder: Figure 2.3 presents a full-adder chip, designed to add three
bits. Like the half-adder, the full-adder chip outputs two bits that, taken
together, represent the addition of the three input bits.



Figure 2.3    Full-adder, designed to add 3 bits.

Adder: Computers represent integer numbers using a fixed word size like
8, 16, 32, or 64 bits. The chip whose job is to add two such n-bit numbers is
called adder. Figure 2.4 presents a 16-bit adder.

Figure 2.4    16-bit adder, designed to add two 16-bit numbers, with an example of addition action
(on the left).



We note in passing that the logic design for adding 16-bit numbers can be
easily extended to implement any n-bit adder chip, irrespective of n.

Incrementer: When we later design our computer architecture, we will
need a chip that adds 1 to a given number (Spoiler: This will enable
fetching the next instruction from memory, after executing the current one).
Although the  operation can be realized by our general-propose Adder
chip, a dedicated incrementer chip can do it more efficiently. Here is the
chip interface:

2.5.2    The Arithmetic Logic Unit

All the adder chips presented so far are generic: any computer that performs
arithmetic operations uses such chips, one way or another. Building on
these chips, we now turn to describe an Arithmetic Logic Unit, a chip that
will later become the computational centerpiece of our CPU. Unlike the
generic gates and chips discussed thus far, the ALU design is unique to the
computer built in Nand to Tetris, named Hack. That said, the design
principles underlying the Hack ALU are general and instructive. Further,
our ALU architecture achieves a great deal of functionality using a minimal
set of internal parts. In that respect, it provides a good example of an
efficient and elegant logic design.

As its name implies, an Arithmetic Logic Unit is a chip designed to
compute a set of arithmetic and logic operations. Exactly which operations
an ALU should feature is a design decision derived from cost-effectiveness
considerations. In the case of the Hack platform, we decided that (i) the
ALU will perform only integer arithmetic (and not, for example, floating
point arithmetic) and (ii) the ALU will compute the set of eighteen
arithmetic-logical functions shown in figure 2.5a.



Figure 2.5a    The Hack ALU, designed to compute the eighteen arithmetic-logical functions shown
on the right (the symbols !, &, and | represent, respectively, the 16-bit operations Not, And, and Or).
For now, ignore the zr and ng output bits.

As seen in figure 2.5a, the Hack ALU operates on two 16-bit two’s
complement integers, denoted x and y, and on six 1-bit inputs, called control
bits. These control bits “tell” the ALU which function to compute. The
exact specification is given in figure 2.5b.



Figure 2.5b    Taken together, the values of the six control bits zx, nx, zy, ny, f, and no cause the
ALU to compute one of the functions listed in the rightmost column.

To illustrate the ALU logic, suppose we wish to compute the function 
 for  To get started, we feed the 16-bit binary code of 27 into the x

input. In this particular example we don’t care about y’s value, since it has
no impact on the required calculation. Now, looking up  in figure 2.5b,
we set the ALU’s control bits to 001110. According to the specification, this
setting should cause the ALU to output the binary code representing 26.

Is that so? To find out, let’s delve deeper, and reckon how the Hack ALU
performs its magic. Focusing on the top row of figure 2.5b, note that each
one of the six control bits is associated with a standalone, conditional



micro-action. For example, the zx bit is associated with “if (zx==1) then set x
to 0”. These six directives are to be performed in order: first, we either set
the x and y inputs to 0, or not; next, we either negate the resulting values, or
not; next, we compute either + or & on the preprocessed values; and finally,
we either negate the resulting value, or not. All these settings, negations,
additions, and conjunctions are 16-bit operations.

With this logic in mind, let us revisit the row associated with x-1 and
verify that the micro-operations coded by the six control bits will indeed
cause the ALU to compute  Going left to right, we see that the zx and nx
bits are 0, so we neither zero nor negate the x input—we leave it as is. The
zy and ny bits are 1, so we first zero the y input and then negate the result,
yielding the 16-bit value 1111111111111111. Since this binary code happens to
represent  in two’s complement, we see that the two data inputs of the
ALU are now x’s value and . Since the f bit is 1, the selected operation is
addition, causing the ALU to compute  Finally, since the no bit is 0,
the output is not negated. To conclude, we’ve illustrated that if we feed the
ALU with x and y values and set the six control bits to 001110, the ALU will
compute  as specified.

What about the other seventeen functions listed in figure 2.5b? Does the
ALU actually compute them as well? To verify that this is indeed the case,
you are invited to focus on other rows in the table, go through the same
process of carrying out the micro-actions coded by the six control bits, and
figure out for yourself what the ALU will output. Or, you can believe us
that the ALU works as advertised.

Note that the ALU actually computes a total of sixty-four functions, since
six control bits code that many possibilities. We’ve decided to focus on, and
document, only eighteen of these possibilities, since these will suffice for
supporting the instruction set of our target computer system. The curious
reader may be intrigued to know that some of the undocumented ALU
operations are quite meaningful. However, we’ve opted not to exploit them
in the Hack system.

The Hack ALU interface is given in figure 2.5c. Note that in addition to
computing the specified function on its two inputs, the ALU also computes
the two output bits zr and ng. These bits, which flag whether the ALU output
is zero or negative, respectively, will be used by the future CPU of our
computer system.



Figure 2.5c    The Hack ALU API.

It may be instructive to describe the thought process that led to the design
of our ALU. First, we made a tentative list of the primitive operations that
we wanted our computer to perform (right column of figure 2.5b). Next, we
used backward reasoning to figure out how x, y, and out can be manipulated
in binary fashion in order to carry out the desired operations. These
processing requirements, along with our objective to keep the ALU logic as
simple as possible, have led to the design decision to use six control bits,
each associated with a straightforward operation that can be easily
implemented with basic logic gates. The resulting ALU is simple and
elegant. And in the hardware business, simplicity and elegance carry the
day.

2.6    Implementation

Our implementation guidelines are intentionally minimal. We already gave
many implementation tips along the way, and now it is your turn to discover
the missing parts in the chip architectures.



Throughout this section, when we say “build/implement a logic design
that …,” we expect you to (i) figure out the logic design (e.g., by sketching
a gate diagram), (ii) write the HDL code that realizes the design, and (iii)
test and debug your design using the supplied test scripts and hardware
simulator. More details are given in the next section, which describes
project 2.

Half-adder: An inspection of the truth table in figure 2.2 reveals that the
outputs sum(a,b) and carry(a,b) happen to be identical to those of two simple
Boolean functions discussed and implemented in project 1. Therefore, the
half-adder implementation is straightforward.

Full-adder: A full-adder chip can be implemented from two half-adders
and one additional gate (and that’s why these adders are called half and
full). Other implementations are possible, including direct approaches that
don’t use half-adders.

Adder: The addition of two n-bit numbers can be done bitwise, from right
to left. In step 0, the least significant pair of bits is added, and the resulting
carry bit is fed into the addition of the next significant pair of bits. The
process continues until the pair of the most significant bits is added. Note
that each step involves the addition of three bits, one of which is propagated
from the “previous” addition.

Readers may wonder how we can add pairs of bits “in parallel” before
the carry bit has been computed by the previous pair of bits. The answer is
that these computations are sufficiently fast as to complete and stabilize
within one clock cycle. We’ll discuss clock cycles and synchronization in
the next chapter; for now, you can ignore the time element completely, and
write HDL code that computes the addition operation by acting on all the
bit-pairs simultaneously.

Incrementer: An n-bit incrementer can be implemented easily in a number
of different ways.

ALU: Our ALU was carefully planned to effect all the desired ALU
operations logically, using the simple Boolean operations implied by the six



control bits. Therefore, the physical implementation of the ALU can be
reduced to implementing these simple operations, following the pseudocode
specifications listed at the top of figure 2.5b. Your first step will likely be
creating a logic design for zeroing and negating a 16-bit value. This logic
can be used for handling the x and y inputs as well as the out output. Chips
for bitwise And-ing and addition have already been built in projects 1 and
2, respectively. Thus, what remains is building logic that selects between
these two operations, according to the f control bit (this selection logic was
also implemented in project 1). Once this main ALU functionality works
properly, you can proceed to implement the required functionality of the
single-bit zr and ng outputs.

2.7    Project

Objective: Implement all the chips presented in this chapter. The only
building blocks that you need are some of the gates described in chapter 1
and the chips that you will gradually build in this project.

Built-in chips: As was just said, the chips that you will build in this project
use, as chip-parts, some of the chips described in chapter 1. Even if you’ve
built these lower-level chips successfully in HDL, we recommend using
their built-in versions instead. As best-practice advice pertaining to all the
hardware projects in Nand to Tetris, always prefer using built-in chip-parts
instead of their HDL implementations. The built-in chips are guaranteed to
operate to specification and are designed to speed up the operation of the
hardware simulator.

There is a simple way to follow this best-practice advice: Don’t add to
the project folder nand2tetris/projects/02 any .hdl file from project 1. Whenever
the hardware simulator will encounter in your HDL code a reference to a
chip-part from project 1, for example, And16, it will check whether there is
an And16.hdl file in the current folder. Failing to find it, the hardware
simulator will resort by default to using the built-in version of this chip,
which is exactly what we want.

The remaining guidelines for this project are identical to those of project
1. In particular, remember that good HDL programs use as few chip-parts as



possible, and there is no need to invent and implement any “helper chips”;
your HDL programs should use only chips that were specified in chapters 1
and 2.

A web-based version of project 2 is available at www.nand2tetris.org.

2.8    Perspective

The construction of the multi-bit adder presented in this chapter was
standard, although no attention was paid to efficiency. Indeed, our
suggested adder implementation is inefficient, due to the delays incurred
while the carry bits propagate throughout the n-bit addends. This
computation can be accelerated by logic circuits that effect so-called carry
lookahead heuristics. Since addition is the most prevalent operation in
computer architectures, any such low-level improvement can result in
dramatic performance gains throughout the system. Yet in this book we
focus mostly on functionality, leaving chip optimization to more specialized
hardware books and courses.2

The overall functionality of any hardware/software system is delivered
jointly by the CPU and the operating system that runs on top of the
hardware platform. Thus, when designing a new computer system, the
question of how to allocate the desired functionality between the ALU and
the OS is essentially a cost/performance dilemma. As a rule, direct
hardware implementations of arithmetic and logical operations are more
efficient than software implementations but make the hardware platform
more expensive.

http://www.nand2tetris.org/


The trade-off that we have chosen in Nand to Tetris is to design a basic
ALU with minimal functionality, and use system software to implement
additional mathematical operations as needed. For example, our ALU
features neither multiplication nor division. In part II of the book, when we
discuss the operating system (chapter 12), we’ll implement elegant and
efficient bitwise algorithms for multiplication and division, along with other
mathematical operations. These OS routines can then be used by compilers
of high-level languages operating on top of the Hack platform. Thus, when
a high-level programmer writes an expression like, say,  then,
following compilation, some parts of the expression will be evaluated
directly by the ALU and some by the OS, yet the high-level programmer
will be completely oblivious to this low-level division of work. Indeed, one
of the key roles of an operating system is closing gaps between the high-
level language abstractions that programmers use and the barebone
hardware on which they are realized.

1.  Which correspond, respectively, to the typical high-level data types byte, short, int, and long. For
example, when reduced to machine-level instructions, short variables can be handled by 16-bit
registers. Since 16-bit arithmetic is four times faster than 64-bit arithmetic, programmers are advised
to always use the most compact data type that satisfies the application’s requirements.
2.  A technical reason for not using carry look-ahead techniques in our adder chips is that their
hardware implementation requires cyclical pin connections, which are not supported by the Nand to
Tetris hardware simulator.



 

3       Memory

It’s a poor sort of memory that only works backward.
—Lewis Carroll (1832–1898)

Consider the high-level operation  In chapter 2 we showed how
logic gates can be utilized for representing numbers and for computing
simple arithmetic expressions like  We now turn to discuss how logic
gates can be used to store values over time—in particular, how a variable
like x can be set to “contain” a value and persist it until we set it to another
value. To do so, we’ll develop a new family of memory chips.

So far, all the chips that we built in chapters 1 and 2, culminating with
the ALU, were time independent. Such chips are sometimes called
combinational: they respond to different combinations of their inputs
without delay, except for the time it takes their inner chip-parts to complete
the computation. In this chapter we introduce and build sequential chips.
Unlike combinational chips, which are oblivious to time, the outputs of
sequential chips depend not only on the inputs in the current time but also
on inputs and outputs that have been processed previously.

Needless to say, the notions of current and previous go hand in hand with
the notion of time: you remember now what was committed to memory
before. Thus, before we start talking about memory, we must first figure out
how to use logic to model the progression of time. This can be done using a
clock that generates an ongoing train of binary signals that we call tick and
tock. The time between the beginning of a tick and the end of the
subsequent tock is called a cycle, and these cycles will be used to regulate
the operations of all the memory chips used by the computer.



Following a brief, user-oriented introduction to memory devices, we will
present the art of sequential logic, which we will use for building time-
dependent chips. We will then set out to build registers, RAM devices, and
counters. These memory devices, along with the arithmetic devices built in
chapter 2, comprise all the chips needed for building a complete, general-
purpose computer system—a challenge that we will take up in chapter 5.

3.1    Memory Devices

Computer programs use variables, arrays, and objects—abstractions that
persist data over time. Hardware platforms support this ability by offering
memory devices that know how to maintain state. Because evolution gave
humans a phenomenal electro-chemical memory system, we tend to take for
granted the ability to remember things over time. However, this ability is
hard to implement in classical logic, which is aware of neither time nor
state. Thus, to get started, we must first find a way to model the progression
of time and endow logic gates with the ability to maintain state and respond
to time changes.

We will approach this challenge by introducing a clock and an
elementary, time-dependent logic gate that can flip and flop between two
stable states: representing 0 and representing 1. This gate, called data flip-
flop (DFF), is the fundamental building block from which all memory
devices will be built. In spite of its central role, though, the DFF is a low-
profile, inconspicuous gate: unlike registers, RAM devices, and counters,
which play prominent roles in computer architectures, DFFs are used
implicitly, as low-level chip-parts embedded deep within other memory
devices.

The fundamental role of the DFF is seen clearly in figure 3.1, where it
serves as the foundation of the memory hierarchy that we are about to build.
We will show how DFFs can be used to create 1-bit registers and how n
such registers can be lashed together to create an n-bit register. Next, we’ll
construct a RAM device containing an arbitrary number of such registers.
Among other things, we’ll develop a means for addressing, that is,
accessing by address, any randomly chosen register from the RAM directly
and instantaneously.



Figure 3.1    The memory hierarchy built in this chapter.

Before setting out to build these chips, though, we’ll present a
methodology and tools that enable modeling the progression of time and
maintaining state over time.

3.2    Sequential Logic

All the chips discussed in chapters 1 and 2 were based on classical logic,
which is time independent. In order to develop memory devices, we need to
extend our gate logic with the ability to respond not only to input changes
but also to the ticking of a clock: we remember the meaning of the word
dog in time t since we remembered it in time  all the way back to the
point of time when we first committed it to memory. In order to develop
this temporal ability to maintain state, we must extend our computer
architecture with a time dimension and build tools that handle time using
Boolean functions.

3.2.1    Time Matters

So far in our Nand to Tetris journey, we have assumed that chips respond to
their inputs instantaneously: you input 7, 2, and “subtract” into the ALU,
and … poof! the ALU output becomes 5. In reality, outputs are always
delayed, due to at least two reasons. First, the inputs of the chips don’t
appear out of thin air; rather, the signals that represent them travel from the
outputs of other chips, and this travel takes time. Second, the computations
that chips perform also take time; the more chip-parts the chip has—the



more elaborate its logic—the more time it will take for the chip’s outputs to
emerge fully formed from the chip’s circuitry.

Thus time is an issue that must be dealt with. As seen at the top of figure
3.2, time is typically viewed as a metaphorical arrow that progresses
relentlessly forward. This progression is taken to be continuous: between
every two time-points there is another time-point, and changes in the world
can be infinitesimally small. This notion of time, which is popular among
philosophers and physicists, is too deep and mysterious for computer
scientists. Thus, instead of viewing time as a continuous progression, we
prefer to break it into fixed-length intervals, called cycles. This
representation is discrete, resulting in cycle 1, cycle 2, cycle 3, and so on.
Unlike the continuous arrow of time, which has an infinite granularity, the
cycles are atomic and indivisible: changes in the world occur only during
cycle transitions; within cycles, the world stands still.

Figure 3.2    Discrete time representation: State changes (input and output values) are observed only
during cycle transitions. Within cycles, changes are ignored.

Of course the world never stands still. However, by treating time
discretely, we make a conscious decision to ignore continuous change. We
are content to know the state of the world in cycle n, and then in cycle 
but during each cycle the state is assumed to be—well, we don’t care.
When it comes to building computer architectures, this discrete view of
time serves two important design objectives. First, it can be used for
neutralizing the randomness associated with communications and



computation time delays. Second, it can be used for synchronizing the
operations of different chips across the system, as we’ll see later.

To illustrate, let’s focus on the bottom part of figure 3.2, which tracks
how a Not gate (used as an example) responds to arbitrarily chosen inputs.
When we feed the gate with 1, it takes a while before the gate’s output
stabilizes on 0. However, since the cycle duration is—by design—longer
than the time delay, when we reach the cycle’s end, the gate output has
already stabilized on 0. Since we probe the state of the world only at cycle
ends, we don’t get to see the interim time delays; rather, it appears as if we
fed the gate with 0, and poof! the gate responded with 1. If we make the
same observations at the end of each cycle, we can generalize that when a
Not gate is fed with some binary input x, it instantaneously outputs Not (x).

Thoughtful readers have probably noticed that for this scheme to work,
the cycle’s length must be longer than the maximal time delays that can
occur in the system. Indeed, cycle length is one of the most important
design parameters of any hardware platform: When planning a computer,
the hardware engineer chooses a cycle length that meets two design
objectives. On the one hand, the cycle should be sufficiently long to
contain, and neutralize, any possible time delay; on the other hand, the
shorter the cycle, the faster the computer: if things happen only during cycle
transitions, then obviously things happen faster when the cycles are shorter.
To sum up, the cycle length is chosen to be slightly longer than the maximal
time delay in any chip in the system. Following the tremendous progress in
switching technologies, we are now able to create cycles as tiny as a
billionth of a second, achieving remarkable computer speed.

Typically, the cycles are realized by an oscillator that alternates
continuously between two phases labeled 0−1, low-high, or ticktock (as
seen in figure 3.2). The elapsed time between the beginning of a tick and
the end of the subsequent tock is called a cycle, and each cycle is taken to
model one discrete time unit. The current clock phase (tick or tock) is
represented by a binary signal. Using the hardware’s circuitry, the same
master clock signal is simultaneously broadcast to every memory chip in
the system. In every such chip, the clock input is funneled to the lower-level
DFF gates, where it serves to ensure that the chip will commit to a new
state, and output it, only at the end of the clock cycle.



3.2.2    Flip-Flops

Memory chips are designed to “remember”, or store, information over time.
The low-level devices that facilitate this storage abstraction are named flip-
flop gates, of which there are several variants. In Nand to Tetris we use a
variant named data flip-flop, or DFF, whose interface includes a single-bit
data input and a single-bit data output (see top of figure 3.3). In addition,
the DFF has a clock input that feeds from the master clock’s signal. Taken
together, the data input and the clock input enable the DFF to implement the
simple time-based behavior out  where in and out are the gate’s
input and output values, and t is the current time unit (from now on, we’ll
use the terms “time unit” and “cycle” interchangeably). Let us not worry
how this behavior is actually implemented. For now, we simply observe that
at the end of each time unit, the DFF outputs the input value from the
previous time unit.

Figure 3.3    The data flip-flop (top) and behavioral example (bottom). In the first cycle the previous
input is unknown, so the DFF’s output is undefined. In every subsequent time unit, the DFF outputs
the input from the previous time unit. Following gate diagramming conventions, the clock input is
marked by a small triangle, drawn at the bottom of the gate icon.

Like Nand gates, DFF gates lie deep in the hardware hierarchy. As shown
in figure 3.1, all the memory chips in the computer—registers, RAM units,
and counters—are based, at bottom, on DFF gates. All these DFFs are
connected to the same master clock, forming a huge distributed “chorus



line.” At the end of each clock cycle, the outputs of all the DFFs in the
computer commit to their inputs from the previous cycle. At all other times,
the DFFs are latched, meaning that changes in their inputs have no
immediate effect on their outputs. This conduction operation effects any
one of the system’s numerous DFF gates many times per second (depending
on the computer’s clock frequency).

Hardware implementations realize the time dependency using a dedicated
clock bus that feeds the master clock signal simultaneously to all the DFF
gates in the system. Hardware simulators emulate the same effect in
software. In particular, the Nand to Tetris hardware simulator features a
clock icon, enabling the user to advance the clock interactively, as well as
tick and tock commands that can be used programmatically, in test scripts.

3.2.3    Combinational and Sequential Logic

All the chips that were developed in chapters 1 and 2, starting with the
elementary logic gates and culminating with the ALU, were designed to
respond only to changes that occur during the current clock cycle. Such
chips are called time-independent chips, or combinational chips. The latter
name alludes to the fact that these chips respond only to different
combinations of their input values, while paying no attention to the
progression of time.

In contrast, chips that are designed to respond to changes that occurred
during previous time units (and possibly during the current time unit as
well) are called sequential, or clocked. The most fundamental sequential
gate is the DFF, and any chip that includes it, either directly or indirectly, is
also said to be sequential. Figure 3.4 depicts a typical sequential logic
configuration. The main element in this configuration is a set of one or
more chips that include DFF chip-parts, either directly or indirectly. As
shown in the figure, these sequential chips may also interact with
combinational chips. The feedback loop enables the sequential chip to
respond to inputs and outputs from the previous time unit. In combinational
chips, where time is neither modeled nor recognized, the introduction of
feedback loops is problematic: the output of the chip would depend on its
input, which itself would depend on the output, and thus the output would
depend on itself. Note, however, that there is no difficulty in feeding



outputs back into inputs, as long as the feedback loop goes through a DFF
gate: the DFF introduces an inherent time delay so that the output at time t
does not depend on itself but rather on the output at time 

Figure 3.4    Sequential logic design typically involves DFF gates that feed from, and connect to,
combinational chips. This gives sequential chips the ability to respond to current as well as to
previous inputs and outputs.

The time dependency of sequential chips has an important side effect that
serves to synchronize the overall computer architecture. To illustrate,
suppose we instruct the ALU to compute  where x is the output of a
nearby register, and y is the output of a remote RAM register. Because of
physical constraints like distance, resistance, and interference, the electric
signals representing x and y will likely arrive at the ALU at different times.
However, being a combinational chip, the ALU is insensitive to the concept
of time—it continuously and happily adds up whichever data values happen
to lodge at its inputs. Thus, it will take some time before the ALU’s output
stabilizes to the correct  result. Until then, the ALU will generate
garbage.

How can we overcome this difficulty? Well, if we use a discrete
representation of time, we simply don’t care. All we have to do is ensure,
when we build the computer’s clock, that the duration of the clock cycle
will be slightly longer than the time it takes a bit to travel the longest
distance from one chip to another, plus the time it takes to complete the



most time-consuming within-chip calculation. This way, we are guaranteed
that by the end of the clock cycle, the ALU’s output will be valid. This, in a
nutshell, is the trick that turns a set of standalone hardware components into
a well-synchronized system. We will have more to say about this master
orchestration when we build the computer architecture in chapter 5.

3.3    Specification

We now turn to specify the memory chips that are typically used in
computer architectures:

data flip-flops (DFFs)
registers (based on DFFs)
RAM devices (based on registers)
counters (based on registers)

As usual, we describe these chips abstractly. In particular, we focus on each
chip’s interface: inputs, outputs, and function. How the chips deliver this
functionality will be discussed in the Implementation section.

3.3.1    Data Flip-Flop

The most elementary sequential device that we will use—the basic
component from which all other memory chips will be constructed—is the
data flip-flop. A DFF gate has a single-bit data input, a single-bit data
output, a clock input, and a simple time-dependent behavior: out

Usage: If we put a one-bit value in the DFF’s input, the DFF’s state will be
set to this value, and the DFF’s output will emit it in the next time unit (see
figure 3.3). This humble operation will prove most useful in the
implementation of registers, which is described next.

3.3.2    Registers

We present a single-bit register, named Bit, and a 16-bit register, named
Register. The Bit chip is designed to store a single bit of information—0 or 1



—over time. The chip interface consists of an in input that carries a data bit,
a load input that enables the register for writes, and an out output that emits
the current state of the register. The Bit API and input/output behavior are
described in figure 3.5.

Figure 3.5    1-bit register. Stores and emits a 1-bit value until instructed to load a new value.

Figure 3.5 illustrates how the single-bit register behaves over time,
responding to arbitrary examples of in and load inputs. Note that irrespective
of the input value, as long as the load bit is not asserted, the register is
latched, maintaining its current state.

The 16-bit Register chip behaves exactly the same as the Bit chip, except
that it is designed to handle 16-bit values. Figure 3.6 gives the details.

Figure 3.6    16-bit Register. Stores and emits a 16-bit value until instructed to load a new value.



Usage: The Bit register and the 16-bit Register are used identically. To read
the state of the register, probe the value of out. To set the register’s state to v,
put v in the in input, and assert (put 1 into) the load bit. This will set the
register’s state to v, and, from the next time unit onward, the register will
commit to the new value, and its out output will start emitting it. We see that
the Register chip fulfills the classical function of a memory device: it
remembers and emits the last value that was written into it, until we set it to
another value.

3.3.3    Random Access Memory

A direct-access memory unit, also called Random Access Memory, or RAM,
is an aggregate of n Register chips. By specifying a particular address (a
number between 0 to ), each register in the RAM can be selected and
made available for read/write operations. Importantly, the access time to
any randomly selected memory register is instantaneous and independent of
the register’s address and the size of the RAM. That’s what makes RAM
devices so remarkably useful: even if they contain billions of registers, we
can still access and manipulate each selected register directly, in the same
instantaneous access time. The RAM API is given in figure 3.7.

Figure 3.7    A RAM chip, consisting of n 16-bit Register chips that can be selected and
manipulated separately. The register addresses  are not part of the chip hardware. Rather,
they are realized by a gate logic implementation that will be discussed in the next section.

Usage: To read the contents of register number m, set the address input to m.
This action will select register number m, and the RAM’s output will emit
its value. To write a new value v into register number m, set the address



input to m, set the in input to v, and assert the load bit (set it to 1). This action
will select register number m, enable it for writing, and set its value to v. In
the next time unit, the RAM’s output will start emitting v.

The net result is that the RAM device behaves exactly as required: a bank
of addressable registers, each of which can be accessed, and operated upon,
independently. In the case of a read operation (load==0), the RAM’s output
immediately emits the value of the selected register. In the case of a write
operation (load==1), the selected memory register is set to the input value,
and the RAM’s output will start emitting it from the next time unit onward.

Importantly, the RAM implementation must ensure that the access time
to any register in the RAM will be nearly instantaneous. If this were not the
case, we would not be able to fetch instructions and manipulate variables in
a reasonable time, making computers impractically slow. The magic of
instantaneous access time will be unfolded shortly, in the Implementation
section.

3.3.4    Counter

The Counter is a chip that knows how to increment its value by 1 each time
unit. When we build our computer architecture in chapter 5, we will call
this chip Program Counter, or PC, so that’s the name that we will use here also.

The interface of our PC chip is identical to that of a register, except that it
also has control bits labeled inc and reset. When inc==1, the counter
increments its state in every clock cycle, effecting the operation PC++. If we
want to reset the counter to 0, we assert the reset bit; if we want to set the
counter to the value v, we put v in the in input and assert the load bit, as we
normally do with registers. The details are given in figure 3.8.

Figure 3.8    Program Counter (PC): To use it properly, at most one of the load, inc, or reset bits
should be asserted.



Usage: To read the current contents of the PC, probe the out pin. To reset the
PC, assert the reset bit and set the other control bits to 0. To have the PC
increment by 1 in each time unit until further notice, assert the inc bit and set
the other control bits to 0. To set the PC to the value v, set the in input to v,
assert the load bit, and set the other control bits to 0.

3.4    Implementation

The previous section presented a family of memory chip abstractions,
focusing on their interface and functionality. This section focuses on how
these chips can be realized, using simpler chips that were already built. As
usual, our implementation guidelines are intentionally suggestive; we want
to give you enough hints to complete the implementation yourself, using
HDL and the supplied hardware simulator.

3.4.1    Data Flip-Flop

A DFF gate is designed to be able to “flip-flop” between two stable states,
representing 0 and representing 1. This functionality can be implemented in
several different ways, including ones that use Nand gates only. The Nand-
based DFF implementations are elegant, yet intricate and impossible to
model in our hardware simulator since they require feedback loops among
combinational gates. Wishing to abstract away this complexity, we will treat
the DFF as a primitive building block. In particular, the Nand to Tetris
hardware simulator provides a built-in DFF implementation that can be
readily used by other chips, as we now turn to describe.

3.4.2    Registers

Register chips are memory devices: they are expected to implement the
basic behavior out , remembering and emitting their state over
time. This looks similar to the DFF behavior, which is out . If we
could only feed the DFF output back into its input, this could be a good
starting point for implementing the one-bit Bit register. This solution is
shown on the left of figure 3.9.



Figure 3.9    The Bit (1-bit register) implementation: invalid (left) and correct (right) solutions.

It turns out that the implementation shown on the left of figure 3.9 is
invalid, for several related reasons. First, the implementation does not
expose a load bit, as required by the register’s interface. Second, there is no
way to tell the DFF chip-part when to draw its input from the in wire and
when from the incoming out value. Indeed, HDL programming rules forbid
feeding a pin from more than one source.

The good thing about this invalid design is that it leads us to the correct
implementation, shown on the right of figure 3.9. As the chip diagram
shows, a natural way to resolve the input ambiguity is introducing a
multiplexer into the design. The load bit of the overall register chip can
then be funneled to the select bit of the inner multiplexer: If we set this bit
to 1, the multiplexer will feed the in value into the DFF; if we set the load bit
to 0, the multiplexer will feed the DFF’s previous output. This will yield the
behavior “if load, set the register to a new value, else set it to the previously
stored value”—exactly how we want a register to behave.

Note that the feedback loop just described does not entail cyclical data
race problems: the loop goes through a DFF gate, which introduces a time
delay. In fact, the Bit design shown in figure 3.9 is a special case of the
general sequential logic design shown in figure 3.4.

Once we’ve completed the implementation of the single-bit Bit register,
we can move on to constructing a w-bit register. This can be achieved by
forming an array of w Bit chips (see figure 3.1). The basic design parameter
of such a register is w—the number of bits that it is supposed to hold—for
example, 16, 32, or 64. Since the Hack computer will be based on a 16-bit
hardware platform, our Register chip will be based on sixteen Bit chip-parts.



The Bit register is the only chip in the Hack architecture that uses a DFF
gate directly; all the higher-level memory devices in the computer use DFF
chips indirectly, by virtue of using Register chips made of Bit chips. Note that
the inclusion of a DFF gate in the design of any chip—directly or indirectly
—turns the latter chip, as well as all the higher-level chips that use it as a
chip-part, into time-dependent chips.

3.4.3    RAM

The Hack hardware platform requires a RAM device of 16K (16384) 16-bit
registers, so that’s what we have to implement. We propose the following
gradual implementation roadmap:

All these memory chips have precisely the same RAMn API given in figure
3.7. Each RAM chip has n registers, and the width of its address input is 

 bits. We now describe how these chips can be implemented, starting
with RAM8.

A RAM8 chip features 8 registers, as shown in figure 3.7, for . Each
register can be selected by setting the RAM8’s 3-bit address input to a value
between 0 and 7. The act of reading the value of a selected register can be
described as follows: Given some address (a value between 0 and 7), how
can we “select” register number address and pipe its output to the RAM8’s
output? Hint: We can do it using one of the combinational chips built in
project 1. That’s why reading the value of a selected RAM register is
achieved nearly instantaneously, independent of the clock and of the
number of registers in the RAM. In a similar way, the act of writing a value
into a selected register can be described as follows: Given an address value,
a load value (1), and a 16-bit in value, how can we set the value of register
number address to in? Hint: The 16-bit in data can be fed simultaneously to



the in inputs of all eight Register chips. Using another combinational chip
developed in project 1, along with the address and load inputs, you can
ensure that only one of the registers will accept the incoming in value, while
all the other seven registers will ignore it.

We note in passing that the RAM registers are not marked with addresses
in any physical sense. Rather, the logic described above is capable of, and
sufficient for, selecting individual registers according to their address, and
this is done by virtue of using combinational chips. Now here is a crucially
important observation: since combinational logic is time independent, the
access time to any individual register will be nearly instantaneous.

Once we’ve implemented the RAM8 chip, we can move on to
implementing a RAM64 chip. The implementation can be based on eight
RAM8 chip-parts. To select a particular register from the RAM64 memory, we
use a 6-bit address, say xxxyyy. The xxx bits can be used to select one of the
RAM8 chips, and the yyy bits can be used to select one of the registers within
the selected RAM8. This hierarchical addressing scheme can be effected by
gate logic. The same implementation idea can guide the implementation of
the remaining RAM512, RAM4K, and RAM16K chips.

To recap, we take an aggregate of an unlimited number of registers, and
impose on it a combinational superstructure that permits direct access to
any individual register. We hope that the beauty of this solution does not
escape the reader’s attention.

3.4.4    Counter

A counter is a memory device that can increment its value in every time
unit. In addition, the counter can be set to 0 or some other value. The basic
storage and counting functionalities of the counter can be implemented,
respectively, by a Register chip and by the incrementer chip built in project 2.
The logic that selects between the counter’s inc, load, and reset modes can be
implemented using some of the multiplexers built in project 1.

3.5    Project



Objective: Build all the chips described in the chapter. The building blocks
that you can use are primitive DFF gates, chips that you will build on top of
them, and the gates built in previous chapters.

Resources: The only tool that you need for this project is the Nand to Tetris
hardware simulator. All the chips should be implemented in the HDL
language specified in appendix 2. As usual, for each chip we supply a
skeletal .hdl program with a missing implementation part, a .tst script file
that tells the hardware simulator how to test it, and a .cmp compare file that
defines the expected results. Your job is to complete the missing
implementation parts of the supplied .hdl programs.

Contract: When loaded into the hardware simulator, your chip design
(modified .hdl program), tested on the supplied .tst file, should produce the
outputs listed in the supplied .cmp file. If that is not the case, the simulator
will let you know.

Tip: The data flip-flop (DFF) gate is considered primitive; thus there is no
need to build it. When the simulator encounters a DFF chip-part in an HDL
program, it automatically invokes the tools/builtIn/DFF.hdl implementation.

Folders structure of this project: When constructing RAM chips from
lower-level RAM chip-parts, we recommend using built-in versions of the
latter. Otherwise, the simulator will recursively generate numerous
memory-resident software objects, one for each of the many chip-parts that
make up a typical RAM unit. This may cause the simulator to run slowly or,
worse, run out of the memory of the host computer on which the simulator
is running.

To avert this problem, we’ve partitioned the RAM chips built in this
project into two subfolders. The RAM8.hdl and RAM64.hdl programs are stored
in projects/03/a, and the other, higher-level RAM chips are stored in
projects/03/b. This partitioning is done for one purpose only: when evaluating
the RAM chips stored in the b folder, the simulator will be forced to use
built-in implementations of the RAM64 chip-parts, because RAM64.hdl cannot
be found in the b folder.



Steps: We recommend proceeding in the following order:

1. The hardware simulator needed for this project is available in
nand2tetris/tools.

2. Consult appendix 2 and the Hardware Simulator Tutorial, as needed.
3. Build and simulate all the chips specified in the projects/03 folder.

A web-based version of project 3 is available at www.nand2tetris.org.

3.6    Perspective

The cornerstone of all the memory systems described in this chapter is the
flip-flop, which we treated abstractly as a primitive, built-in gate. The usual
approach is to construct flip-flops from elementary combinational gates
(e.g., Nand gates) connected in feedback loops. The standard construction
begins by building a non-clocked flip-flop which is bi-stable, that is, can be
set to be in one of two states (storing 0, and storing 1). Then a clocked flip-
flop is obtained by cascading two such non-clocked flip-flops, the first
being set when the clock ticks and the second when the clock tocks. This
master-slave design endows the overall flip-flop with the desired clocked
synchronization functionality.

Such flip-flop implementations are both elegant and intricate. In this
book we have chosen to abstract away these low-level considerations by
treating the flip-flop as a primitive gate. Readers who wish to explore the
internal structure of flip-flop gates can find detailed descriptions in most
logic design and computer architecture textbooks.

One reason not to dwell on flip-flop esoterica is that the lowest level of
the memory devices used in modern computers is not necessarily
constructed from flip-flop gates. Instead, modern memory chips are
carefully optimized, exploiting the unique physical properties of the
underlying storage technology. Many such alternative technologies are
available today to computer designers; as usual, which technology to use is
a cost-performance issue. Likewise, the recursive ascent method that we
used to build the RAM chips is elegant but not necessarily efficient. More
efficient implementations are possible.

http://www.nand2tetris.org/


Aside from these physical considerations, all the chip constructions
described in this chapter—the registers, the counter, and the RAM chips—
are standard, and versions of them can be found in every computer system.

In chapter 5, we will use the register chips built in this chapter, along
with the ALU built in chapter 2, to build a Central Processing Unit. The
CPU will then be augmented with a RAM device, leading up to a general-
purpose computer architecture capable of executing programs written in a
machine language. This machine language is discussed in the next chapter.



 

4       Machine Language

Works of imagination should be written in very plain language; the more purely imaginative they are,
the more necessary it is to be plain.

—Samuel Taylor Coleridge (1772–1834)

In chapters 1–3 we built processing and memory chips that can be
integrated into the hardware platform of a general-purpose computer.
Before we set out to complete this construction, let’s pause and ask: What
exactly is the purpose of this computer? As the architect Louis Sullivan
famously observed, “Form follows function.” If you wish to understand a
system, or build one, start by studying the function that the system is
supposed to serve. With that in mind, before we set out to complete the
construction of our hardware platform, we’ll devote this chapter to studying
the machine language that this platform is designed to realize. After all,
executing programs written in machine language efficiently is the ultimate
function of any general-purpose computer.

A machine language is an agreed-upon formalism designed to code
machine instructions. Using these instructions, we can instruct the
computer’s processor to perform arithmetic and logical operations, read and
write values from and to the computer’s memory, test Boolean conditions,
and decide which instruction to fetch and execute next. Unlike high-level
languages, whose design goals are cross-platform compatibility and power
of expression, machine languages are designed to effect direct execution in,
and total control of, a specific hardware platform. Of course, generality,
elegance, and power of expression are still desired, but only to the extent
that they support the basic requirement of direct and efficient execution in
hardware.



Machine language is the most profound interface in the computer
enterprise—the fine line where hardware meets software. This is the point
where the abstract designs of humans, as manifested in high-level
programs, are finally reduced to physical operations performed in silicon.
Thus, a machine language can be construed as both a programming artifact
and an integral part of the hardware platform. In fact, just as we say that the
machine language is designed to control a particular hardware platform, we
can say that the hardware platform is designed to execute instructions
written in a particular machine language.

The chapter begins with a general introduction to low-level programming
in machine language. Next, we give a detailed specification of the Hack
machine language, covering both its binary and symbolic versions. The
project that ends the chapter focuses on writing some machine language
programs. This provides a hands-on appreciation of low-level programming
and sets the stage for completing the construction of the computer hardware
in the next chapter.

Although programmers rarely write programs directly in machine
language, the study of low-level programming is a prerequisite to a
complete and rigorous understanding of how computers work. Further, an
intimate understanding of low-level programming helps the programmer
write better and more efficient high-level programs. Finally, it is rather
fascinating to observe, hands-on, how the most sophisticated software
systems are, at bottom, streams of simple instructions, each specifying a
primitive bitwise operation on the underlying hardware.

4.1    Machine Language: Overview

This chapter focuses not on the machine but rather on the language used to
control the machine. Therefore, we will abstract away the hardware
platform, focusing on the minimal subset of hardware elements that are
mentioned explicitly in machine language instructions.

4.1.1    Hardware Elements



A machine language can be viewed as an agreed-upon formalism designed
to manipulate a memory using a processor and a set of registers.

Memory: The term memory refers loosely to the collection of hardware
devices that store data and instructions in a computer. Functionally
speaking, a memory is a continuous sequence of cells, also referred to as
locations or memory registers, each having a unique address. An individual
memory register is accessed by supplying its address.

Processor: The processor, normally called the Central Processing Unit, or
CPU, is a device capable of performing a fixed set of primitive operations.
These include arithmetic and logical operations, memory access operations,
and control (also called branching) operations. The processor draws its
inputs from selected registers and memory locations and writes its outputs
to selected registers and memory locations. It consists of an ALU, a set of
registers, and gate logic that enables it to parse and execute binary
instructions.

Registers: The processor and the memory are implemented as two separate,
standalone chips, and moving data from one to the other is a relatively slow
affair. For this reason, processors are normally equipped with several on-
board registers, each capable of holding a single value. Located inside the
processor’s chip, the registers serve as a high-speed local memory, allowing
the processor to manipulate data and instructions without having to venture
outside the chip.

The CPU-resident registers fall into two categories: data registers,
designed to hold data values, and address registers, designed to hold values
that can be interpreted either as data values or as memory addresses. The
computer architecture is configured in such a way that placing a particular
value, say n, in an address register, causes the memory location whose
address is n to become selected instantaneously.1 This sets the stage for a
subsequent operation on the selected memory location.

4.1.2    Languages



Machine language programs can be written in two alternative, but
equivalent, ways: binary and symbolic. For example, consider the abstract
operation “set R1 to the value of ”. As language designers, we can
decide to represent the addition operation using the 6-bit code 101011, and
registers R1 and R2 using the codes 00001 and 00010, respectively.
Assembling these codes left to right, we can decide to use the 16-bit
instruction 1010110001000001 as the binary version of “set R1 to the value of 

”.
In the early days of computer systems, computers were programmed

manually: When proto-programmers wanted to issue the instruction “set R1
to the value of ”, they pushed up and down mechanical switches that
stored a binary code like 1010110001000001 in the computer’s instruction
memory. And if the program was a hundred instructions long, they had to
go through this ordeal a hundred times. Of course debugging such programs
was a perfect nightmare. This led programmers to invent and use symbolic
codes as a convenient way for documenting and debugging programs on
paper, before entering them into the computer. For example, the symbolic
format add R2,R1 could be chosen for representing the semantics “set R1 to
the value of ” and the binary instruction 1010110001000001.

It didn’t take long before several people hit on the same idea: Symbols
like R, 1, 2, and + can also be represented using agreed-upon binary codes.
Why not use symbolic instructions for writing programs, and then use
another program—a translator—for translating the symbolic instructions
into executable binary code? This innovation liberated programmers from
the tedium of writing binary code, paving the way for the subsequent
onslaught of high-level programming languages. For reasons that will
become clear in chapter 6, symbolic machine languages are called assembly
languages, and the programs that translate them into binary code are called
assemblers.

Unlike the syntax of high-level languages, which is portable and
hardware independent, the syntax of an assembly language is tightly related
to the low-level details of the target hardware: the available ALU
operations, number and type of registers, memory size, and so on. Since
different computers vary greatly in terms of any one of these parameters,
there is a Tower of Babel of machine languages, each with its obscure
syntax, each designed to control a particular family of CPUs. Irrespective of



this variety, though, all machine languages are theoretically equivalent, and
all of them support similar sets of generic tasks, as we now turn to describe.

4.1.3    Instructions

In what follows, we assume that the computer’s processor is equipped with
a set of registers denoted R0, R1, R2, … The exact number and type of these
registers are irrelevant to our present discussion.

Arithmetic and logical operations: Every machine language features
instructions for performing basic arithmetic operations like addition and
subtraction, as well as basic logical operations like And, Or, Not. For
example, consider the following code segments:

For such symbolic instructions to execute on a computer, they must first be
translated into binary code. The translation is done by a program named
assembler, which we’ll develop in chapter 6. For now, we assume that we
have access to such an assembler and that we can use it as needed.

Memory access: Every machine language features means for accessing,
and then manipulating, selected memory locations. This is typically done
using an address register, let’s call it A. For example, suppose we wish to
set memory location 17 to the value 1. We can decide to do so using the two
instructions load A,17 followed by load M,1, where, by convention, M stands
for the memory register selected by A (namely, the memory register whose
address is the current value of A). With that in mind, suppose we wish to set
the fifty memory locations 200, 201, 202, …, 249 to 1. This can be done by



executing the instruction load A,200 and then entering a loop that executes
the instructions load M,1 and add A,A,1 fifty times.

Flow control: While computer programs execute by default sequentially,
one instruction after another, they also include occasional jumps to locations
other than the next instruction. To facilitate such branching actions,
machine languages feature several variants of conditional and unconditional
goto instructions, as well as label declaration statements that mark the goto
destinations. Figure 4.1 illustrates a simple branching action using machine
language.

Figure 4.1    Two versions of the same low-level code (it is assumed that the code includes some
loop termination logic, not shown here).

Symbols: Both code versions in figure 4.1 are written in assembly
language; thus, both must be translated into binary code before they can be
executed. Also, both versions perform exactly the same logic. However, the
code version that uses symbolic references is much easier to write, debug,
and maintain.

Further, unlike the code that uses physical addresses, the translated
binary version of the code that uses symbolic references can be loaded into,
and executed from, any memory segment that happens to be available in the
computer’s memory. Therefore, low-level code that mentions no physical
addresses is said to be relocatable. Clearly, relocatable code is essential in
computer systems like PCs and cell phones, which routinely load and
execute multiple apps dynamically and simultaneously. Thus, we see that



symbolic references are not just a matter of cosmetics—they are used to
liberate the code from unnecessary physical attachments to the host
memory.

This ends our brief introduction to some machine language essentials.
The next section gives a formal description of one specific machine
language—the native code of the Hack computer.

4.2    The Hack Machine Language

Programmers who write low-level code (or programmers who write
compilers and interpreters that generate low-level code) interact with the
computer abstractly, through its interface, which is the computer’s machine
language. Although programmers don’t have to be aware of all the details
of the underlying computer architecture, they should be familiar with the
hardware elements that come to play in their low-level programs.

With that in mind, we begin the discussion of the Hack machine language
with a conceptual description of the Hack computer. Next, we give an
example of a complete program written in the Hack assembly language.
This sets the stage for the remainder of this section, in which we give a
formal specification of the Hack language instructions.

4.2.1    Background

The design of the Hack computer, which will be presented in the next
chapter, follows a widely used hardware paradigm known as the von
Neumann architecture, named after the computing pioneer John von
Neumann. Hack is a 16-bit computer, meaning that the CPU and the
memory units are designed to process, move, and store, chunks of 16-bit
values.

Memory: As seen in figure 4.2, the Hack platform uses two distinct
memory units: a data memory and an instruction memory. The data memory
stores the binary values that programs manipulate. The instruction memory
stores the program’s instructions, also represented as binary values. Both
memories are 16-bit wide, and each has a 15-bit address space. Thus the



maximum addressable size of each memory unit is 215 or 32K 16-bit words
(the symbol K, abbreviated from kilo—the Greek word for thousand—is
commonly used to stand for the number ). It is convenient to think
about each memory unit as a linear sequence of addressable memory
registers, with addresses ranging from 0 to 32K–1.

Figure 4.2    Conceptual model of the Hack memory system. Although the actual architecture is
wired somewhat differently (as described in chapter 5), this model helps understand the semantics of
Hack programs.

The data memory (which we also call RAM) is a read/write device. Hack
instructions can read data from, and write data to, selected RAM registers.
An individual register is selected by supplying its address. Since the
memory’s address input always contains some value, there is always one
selected register, and this register is referred to in Hack instructions as M.
For example, the Hack instruction  sets the selected RAM register to 0.

The instruction memory (which we also call ROM) is a read-only device,
and programs are loaded into it using some exogenous means (more about
this in chapter 5). Just like with the RAM, the instruction memory’s address
input always contains some value; thus, there is always one selected
instruction memory register. The value of this register is referred to as the
current instruction.



Registers: Hack instructions are designed to manipulate three 16-bit
registers: a data register, denoted D, an address register, denoted A, and a
selected data memory register, denoted M. Hack instructions have a self-
explanatory syntax. For example:   and so on.

The role of the data register D is straightforward: it serves to store a 16-
bit value. The second register, A, serves as both an address register and a
data register. If we wish to store the value 17 in the A register, we use the
Hack instruction @17 (the reason for this syntax will become clear soon). In
fact, this is the only way to get a constant into the Hack computer. For
example, if we wish to set the D register to 17, we use the two instructions
@17, followed by . In addition to serving as a second data register, the
hard-working A register is also used for addressing the data memory and the
instruction memory, as we now turn to discuss.

Addressing: The Hack instruction @ xxx sets the A register to the value xxx.
In addition, the @ xxx instruction has two side effects. First, it makes the
RAM register whose address is xxx the selected memory register, denoted
M. Second, it makes the value of the ROM register whose address is xxx the
selected instruction. Therefore, setting A to some value has the simultaneous
effect of preparing the stage, potentially, for one of two very different
subsequent actions: manipulating the selected data memory register or
doing something with the selected instruction. Which action to pursue (and
which to ignore) is determined by the subsequent Hack instruction.

To illustrate, suppose we wish to set the value of RAM[100] to 17. This can
be done using the Hack instructions @17, , @100, . Note that in the
first pair of instructions, A serves as a data register; in the second pair of
instructions, it serves as an address register. Here is another example: To set
RAM[100] to the value of RAM[200], we can use the Hack instructions @200, 

, @100, .
In both of these scenarios, the A register also selected registers in the

instruction memory—an action which the two scenarios ignored. The next
section discusses the opposite scenario: using A for selecting instructions
while ignoring its effect on the data memory.

Branching: The code examples thus far imply that a Hack program is a
sequence of instructions, to be executed one after the other. This indeed is



the default flow of control, but what happens if we wish to branch to
executing not the next instruction but, say, instruction number 29 in the
program? In the Hack language, this can be done using the Hack instruction
@29, followed by the Hack instruction 0;JMP. The first instruction selects the
ROM[29] register (it also selects RAM[29], but we don’t care about it). The
subsequent 0;JMP instruction realizes the Hack version of unconditional
branching: go to execute the instruction addressed by the A register (we’ll
explain the ;0 prefix later). Since the ROM is assumed to contain the program
that we are presently executing, starting at address 0, the two instructions
@29 and 0;JMP end up making the value of ROM[29] the next instruction to be
executed.

The Hack language also features conditional branching. For example, the
logic if D==0 goto 52 can be implemented using the instruction @52, followed
by the instruction D;JEQ. The semantics of the second instruction is
“evaluate D; if the value equals zero, jump to execute the instruction stored
in the address selected by A”. The Hack language features several such
conditional branching commands, as we’ll explain later in the chapter.

To recap: The A register serves two simultaneous, yet very different,
addressing functions. Following an @xxx instruction, we either focus on the
selected data memory register (M) and ignore the selected instruction, or we
focus on the selected instruction and ignore the selected data memory
register. This duality is a bit confusing, but note that we got away with
using one address register to control two separate memory devices (see
figure 4.2). The result is a simpler computer architecture and a compact
machine language. As usual in our business, simplicity and thrift reign
supreme.

Variables: The xxx in the Hack instruction @xxx can be either a constant or
a symbol. If the instruction is @23, the A register is set to the value 23. If the
instruction is @x, where x is a symbol that is bound to some value, say 513,
the instruction sets the A register to 513. The use of symbols endows Hack
assembly programs with the ability to use variables rather than physical
memory addresses. For example, the typical high-level assignment
statement let  can be implemented in the Hack language as @17, , @x,

. The semantics of this code is “select the RAM register whose address is
the value that is bound to the symbol x, and set this register to 17”. Here we



assume that there is an agent who knows how to bind the symbols found in
high-level languages, like x, to sensible and consistent addresses in the data
memory. This agent is the assembler.

Thanks to the assembler, variables like x can be named and used in Hack
programs at will, and as needed. For example, suppose we wish to write
code that increments some counter. One option is to keep this counter in,
say, RAM[30], and increment it using the instructions  A more
sensible approach is to use @count,  and let the assembler worry about
where to put this variable in memory. We don’t care about the specific
address so long as the assembler will always resolve the symbol to that
address. In chapter 6 we’ll learn how to develop an assembler that
implements this useful mapping operation.

In addition to the symbols that can be introduced into Hack assembly
programs as needed, the Hack language features sixteen built-in symbols
named R0, R1, R2, …, R15. These symbols are always bound by the
assembler to the values 0, 1, 2, …, 15. Thus, for example, the two Hack
instructions @R3,  will end up setting RAM[3] to 0. In what follows, we
sometimes refer to R0, R1, R2, …, R15 as virtual registers.

Before going on, we suggest you review, and make sure you fully
understand, the code examples shown in figure 4.3 (some of which were
already discussed).

Figure 4.3    Hack assembly code examples.



4.2.2    Program Example

Jumping into the cold water, let’s review a complete Hack assembly
program, deferring a formal description of the Hack language to the next
section. Before we do so, a word of caution: Most readers will probably be
mystified by the obscure style of this program. To which we say: Welcome
to machine language programming. Unlike high-level languages, machine
languages are not designed to please programmers. Rather, they are
designed to control a hardware platform, efficiently and plainly.

Suppose we wish to compute the sum  for a given value n.
To operationalize things, we’ll put the input n in RAM[0] and the output sum
in RAM[1]. The program that computes this sum is listed in figure 4.4.
Beginning with the pseudocode, note that instead of utilizing the well-
known formula for computing the sum of an arithmetic series, we use brute-
force addition. This is done for illustrating conditional and iterative
processing in the Hack machine language.



Figure 4.4    A Hack assembly program (example). Note that RAM[0] and RAM[1] can be referred to
as R0 and R1.

Later in the chapter you will understand this program completely. For
now, we suggest ignoring the details, and observing instead the following
pattern: In the Hack language, every operation involving a memory location
entails two instructions. The first instruction, @addr, is used to select a
target memory address; the subsequent instruction specifies what to do at
this address. To support this logic, the Hack language features two generic
instructions, several examples of which we have already seen: an address
instruction, also called A-instruction (the instructions that start with @), and
a compute instruction, also called C-instruction (all the other instructions).



Each instruction has a symbolic representation, a binary representation, and
an effect on the computer, as we now turn to describe.

4.2.3    The Hack Language Specification

The Hack machine language consists of two instructions, specified in figure
4.5.

Figure 4.5    The Hack instruction set, showing symbolic mnemonics and their corresponding binary
codes.

The A-instruction

The A-instruction sets the A register to some 15-bit value. The binary
version consists of two fields: an operation code, also known as op-code,
which is 0 (the leftmost bit), followed by fifteen bits that code a
nonnegative binary number. For example, the symbolic instruction @5,
whose binary version is 0000000000000101, stores the binary representation of
5 in the A register.

The A-instruction is used for three different purposes. First, it provides
the only way to enter a constant into the computer under program control.



Second, it sets the stage for a subsequent C-instruction that manipulates a
selected RAM register, referred to as M, by first setting A to the address of
that register. Third, it sets the stage for a subsequent C-instruction that
specifies a jump by first setting A to the address of the jump destination.

The C-instruction

The C-instruction answers three questions: what to compute (an ALU
operation, denoted comp), where to store the computed value (dest), and
what to do next (jump). Along with the A-instruction, the C-instruction
specifies all the possible operations of the computer.

In the binary version, the leftmost bit is the C-instruction’s op-code,
which is 1. The next two bits are not used, and are set by convention to 1.
The next seven bits are the binary representation of the comp field. The next
three bits are the binary representation of the dest field. The rightmost three
bits are the binary representation of the jump field. We now describe the
syntax and semantics of these three fields.

Computation specification (comp): The Hack ALU is designed to
compute one out of a fixed set of functions on two given 16-bit inputs. In
the Hack computer, the two ALU data inputs are wired as follows. The first
ALU input feeds from the D register. The second ALU input feeds either
from the A register (when the a-bit is 0) or from M, the selected data memory
register (when the a-bit is 1). Taken together, the computed function is
specified by the a-bit and the six c-bits comprising the instruction’s comp
field. This 7-bit pattern can potentially code 128 different calculations, of
which only the twenty-eight listed in figure 4.5 are documented in the
language specification.

Recall that the format of the C-instruction is 111accccccdddjjj. Suppose we
want to compute the value of the D register, minus 1. According to figure
4.5, this can be done using the symbolic instruction D−1, which is
1110001110000000 in binary (the relevant 7-bit comp field is underlined for
emphasis). To compute a bitwise Or between the values of the D and M
registers, we use the instruction D|M (in binary: 1111010101000000). To
compute the constant , we use the instruction −1 (in binary:
1110111010000000), and so on.



Destination specification (dest): The ALU output can be stored in zero,
one, two, or three possible destinations, simultaneously. The first and
second d-bits code whether to store the computed value in the A register and
in the D register, respectively. The third d-bit codes whether to store the
computed value in M, the currently selected memory register. One, more
than one, or none of these three bits may be asserted.

Recall that the format of the C-instruction is 111accccccdddjjj. Suppose we
wish to increment the value of the memory register whose address is 7 and
also to store the new value in the D register. According to figure 4.5, this
can be accomplished using the two instructions:

Jump directive (jump): The jump field of the C-instruction specifies what
to do next. There are two possibilities: fetch and execute the next
instruction in the program, which is the default, or fetch and execute some
other, designated instruction. In the latter case, we assume that the A register
was already set to the address of the target instruction.

During run-time, whether or not to jump is determined jointly by the
three j-bits of the instruction’s jump field and by the ALU output. The first,
second, and third j-bits specify whether to jump in case the ALU output is
negative, zero, or positive, respectively. This gives eight possible jump
conditions, listed at the bottom right of figure 4.5. The convention for
specifying an unconditional goto instruction is 0;JMP (since the comp field is
mandatory, the convention is to compute 0—an arbitrarily chosen ALU
operation—which is ignored).

Preventing conflicting uses of the A register: The Hack computer uses
one address register for addressing both the RAM and the ROM. Thus,
when we execute the instruction @n, we select both RAM[n] and ROM[n]. This
is done in order to set the stage for either a subsequent C-instruction that
operates on the selected data memory register, M, or a subsequent C-
instruction that specifies a jump. To make sure that we perform exactly one
of these two operations, we issue the following best-practice advice: A C-



instruction that contains a reference to M should specify no jump, and vice
versa: a C-instruction that specifies a jump should make no reference to M.

4.2.4    Symbols

Assembly instructions can specify memory locations (addresses) using
either constants or symbols. The symbols fall into three functional
categories: predefined symbols, representing special memory addresses;
label symbols, representing destinations of goto instructions; and variable
symbols, representing variables.

Predefined symbols: There are several kinds of predefined symbols,
designed to promote consistency and readability of low-level Hack
programs.

R0, R1, …, R15: These symbols are bound to the values 0 to 15. This
predefined binding helps make Hack programs more readable. To illustrate,
consider the following code segment:

The instruction @7 sets the A register to 7, and @R3 sets the A register to
3. Why do we use R in the latter and not in the former? Because it makes
the code more self-explanatory. In the instruction @7, the syntax hints that A
is used as a data register, ignoring the side effect of also selecting RAM[7]. In
the instruction @R3, the syntax hints that A is used to select a data memory
address. In general, the predefined symbols R0, R1, …, R15 can be viewed as
ready-made working variables, sometimes referred to as virtual registers.

SP, LCL, ARG, THIS, THAT: These symbols are bound to the values 0, 1, 2, 3,
and 4, respectively. For example, address 2 can be selected using either @2,
@R2, or @ARG. The symbols SP, LCL, ARG, THIS, and THAT will be used in
part II of the book, when we implement the compiler and the virtual



machine that run on top of the Hack platform. These symbols can be
completely ignored for now; we specify them for completeness.

SCREEN, KBD: Hack programs can read data from a keyboard and display
data on a screen. The screen and the keyboard interface with the computer
via two designated memory blocks known as memory maps. The symbols
SCREEN and KBD are bound, respectively, to the values 16384 and 24576 (in
hexadecimal: 4000 and 6000), which are the agreed-upon base addresses of
the screen memory map and the keyboard memory map, respectively. These
symbols are used by Hack programs that manipulate the screen and the
keyboard, as we’ll see in the next section.

Label symbols: Labels can appear anywhere in a Hack assembly program
and are declared using the syntax (xxx). This directive binds the symbol xxx
to the address of the next instruction in the program. Goto instructions that
make use of label symbols can appear anywhere in the program, even
before the label has been declared. By convention, label symbols are written
using uppercase letters. The program listed in figure 4.4 uses three label
symbols: LOOP, STOP and END.

Variable symbols: Any symbol xxx appearing in a Hack assembly program
that is not predefined and is not declared elsewhere using (xxx) is treated as
a variable and is bound to a unique running number starting at 16. By
convention, variable symbols are written using lowercase letters. For
example, the program listed in figure 4.4 uses two variables: i and sum.
These symbols are bound by the assembler to 16 and 17, respectively.
Therefore, following translation, instructions like @i and @sum end up
selecting memory addresses 16 and 17, respectively. The beauty of this
contract is that the assembly program is completely oblivious of the
physical addresses. The assembly program uses symbols only, trusting that
the assembler will know how to resolve them into actual addresses.

4.2.5    Input/Output Handling

The Hack hardware platform can be connected to two peripheral I/O
devices: a screen and a keyboard. Both devices interact with the computer



platform through memory maps.
Drawing pixels on the screen is done by writing binary values into a

designated memory segment associated with the screen, and listening to the
keyboard is done by reading a designated memory location associated with
the keyboard. The physical I/O devices and their memory maps are
synchronized via continuous refresh loops that are external to the main
hardware platform.

Screen: The Hack computer interacts with a black-and-white screen
organized as 256 rows of 512 pixels per row. The screen’s contents are
represented by a memory map, stored in an 8K memory block of 16-bit
words, starting at RAM address 16384 (in hexadecimal: 4000), also referred
to by the predefined symbol SCREEN. Each row in the physical screen,
starting at the screen’s top-left corner, is represented in the RAM by thirty-
two consecutive 16-bit words. Following convention, the screen origin is
the top-left corner, which is considered row 0 and column 0. With that in
mind, the pixel at row row and column col is mapped onto the col % 16 bit
(counting from LSB to MSB) of the word located at RAM[SCREEN

]. This pixel can be either read (probing whether it is black
or white), made black by setting it to 1, or made white by setting it to 0. For
example, consider the following code segment, which blackens the first 16
pixels at the top left of the screen:

Note that Hack instructions cannot access individual pixels/bits directly.
Instead, we must fetch a complete 16-bit word from the memory map,
figure out which bit or bits we wish to manipulate, carry out the
manipulation using arithmetic/logical operations (without touching the
other bits), and then write the modified 16-bit word to the memory. In the
example given above, we got away with not doing bit-specific



manipulations since the task could be implemented using one bulk
manipulation.

Keyboard: The Hack computer can interact with a standard physical
keyboard via a single-word memory map located at RAM address 24576 (in
hexadecimal: 6000), also referred to by the predefined symbol KBD. The
contract is as follows: When a key is pressed on the physical keyboard, its
16-bit character code appears at RAM[KBD]. When no key is pressed, the code
0 appears. The Hack character set is listed in appendix 5.

By now, readers with programming experience have probably noticed
that manipulating input/output devices using assembly language is a tedious
affair. That’s because they are accustomed to using high-level statements
like write ("hello") or draw Circle (x,y, radius). As you can now appreciate, there is
a considerable gap between these abstract, high-level I/O statements and the
bit-by-bit machine instructions that end up realizing them in silicon. One of
the agents that closes this gap is the operating system—a program that
knows, among many other things, how to render text and draw graphics
using pixel manipulations. We will discuss and write one such OS in part II
of the book.

4.2.7    Syntax Conventions and File Formats

Binary code files: By convention, programs written in the binary Hack
language are stored in text files with a hack extension, for example,
Prog.hack. Each line in the file codes a single binary instruction, using a
sequence of sixteen 0 and 1 characters. Taken together, all the lines in the
file represent a machine language program. The contract is as follows:
When a machine language program is loaded into the computer’s
instruction memory, the binary code appearing in the file’s nth line is stored
at address n of the instruction memory. The counts of program lines,
instructions, and memory addresses start at 0.

Assembly language files: By convention, programs written in the symbolic
Hack assembly language are stored in text files with an asm extension, for
example, Prog.asm. An assembly language file is composed of text lines,



each being an A-instruction, a C-instruction, a label declaration, or a
comment.

A label declaration is a text line of the form (symbol). The assembler
handles such a declaration by binding symbol to the address of the next
instruction in the program. This is the only action that the assembler takes
when handling a label declaration; no binary code is generated. That’s why
label declarations are sometimes referred to as pseudo-instructions: they
exist only at the symbolic level, generating no code.

Constants and symbols: These are the xxx’s in A-instructions of the form
@xxx. Constants are nonnegative values from 0 to  and are written in
decimal notation. A symbol is any sequence of letters, digits, underscore (_),
dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Comments: A text line beginning with two slashes (//) and ending at the
end of the line is considered a comment and is ignored.

White space: Leading space characters and empty lines are ignored.

Case conventions: All the assembly mnemonics (figure 4.5) must be
written in uppercase. By convention, label symbols are written in
uppercase, and variable symbols in lowercase. See figure 4.4 for examples.

4.3    Hack Programming

We now turn to present three examples of low-level programming, using the
Hack assembly language. Since project 4 focuses on writing Hack assembly
programs, it will serve you well to carefully read and understand these
examples.

Example 1: Figure 4.6 shows a program that adds up the values of the first
two RAM registers, adds 17 to the sum, and stores the result in the third
RAM register. Before running the program, the user (or a test script) is
expected to put some values in RAM[0] and RAM[1].



Figure 4.6    A Hack assembly program that computes a simple arithmetic expression.

Among other things, the program illustrates how the so-called virtual
registers R0, R1, R2, … can be used as working variables. The program also
illustrates the recommended way of terminating Hack programs, which is
staging and entering an infinite loop. In the absence of this infinite loop, the
CPU’s fetch-execute logic (explained in the next chapter) will merrily glide
forward, trying to execute whatever instructions are stored in the
computer’s memory following the last instruction in the current program.
This may lead to unpredictable and potentially hazardous consequences.
The deliberate infinite loop serves to control and contain the CPU’s
operation after completing the program’s execution.

Example 2: The second example computes the sum  where n
is the value of the first RAM register, and puts the sum in the second RAM



register. This program is shown in figure 4.4, and now we have what it
takes to understand it fully.

Among other things, this program illustrates the use of symbolic
variables—in this case i and sum. The example also illustrates our
recommended practice for low-level program development: instead of
writing assembly code directly, start by writing goto-oriented pseudocode.
Next, test your pseudocode on paper, tracing the values of key variables.
When convinced that the program’s logic is correct, and that it does what
it’s supposed to do, proceed to express each pseudo-instruction as one or
more assembly instructions.

The virtues of writing and debugging symbolic (rather than physical)
instructions were observed by the gifted mathematician and writer Augusta
Ada King-Noel, Countess of Lovelace, back in 1843. This important insight
has contributed to her lasting fame as history’s first programmer. Before
Ada Lovelace, proto-programmers who worked with early mechanical
computers were reduced to tinkering with machine operations directly, and
coding was hard and error prone. What was true in 1843 about symbolic
and physical programming is equally true today about pseudo and assembly
programming: When it comes to nontrivial programs, writing and testing
pseudocode and then translating it into assembly instructions is easier and
safer than writing assembly code directly.

Example 3: Consider the high-level array processing idiom for  {do
something with arr[i]}. If we wish to express this logic in assembly, then our
first challenge is that the array abstraction does not exist in machine
language. However, if we know the base address of the array in the RAM,
we can readily implement this logic in assembly, using pointer-based access
to the array elements.

To illustrate the notion of a pointer, suppose that variable x contains the
value 523, and consider the two possible pseudo-instructions  and *
(of which we execute only one). The first instruction sets the value of x to
17. The second instruction informs that x is to be treated as a pointer, that
is, a variable whose value is interpreted as a memory address. Hence, the
instruction ends up setting RAM[523] to 17, leaving the value of x intact.

The program in figure 4.7 illustrates pointer-based array processing in the
Hack machine language. The key instructions of interest are 



followed by  In the Hack language, the basic pointer-processing idiom
is implemented by an instruction of the form A=…, followed by a C-
instruction that operates on M (which stands for RAM[A], the memory
location selected by A). As we will see when we write the compiler in the
second part of the book, this humble low-level programming idiom enables
implementing, in Hack assembly, any array access or object-based get/set
operation expressed in any high-level language.

Figure 4.7    Array processing example, using pointer-based access to array elements.

4.4    Project

Objective: Acquire a taste of low-level programming, and get acquainted
with the Hack computer system. This will be done by writing and executing
two low-level programs, written in the Hack assembly language.

Resources: The only resources required to complete the project are the
Hack CPU emulator, available in nand2tetris/tools, and the test scripts



described below, available in the projects/04 folder.

Contract: Write and test the two programs described below. When
executed on the supplied CPU emulator, your programs should realize the
described behaviors.

Multiplication (Mult.asm): The inputs of this program are the values stored
in R0 and R1 (RAM[0] and RAM[1]). The program computes the product 
and stores the result in R2. Assume that  (your
program need not test these assertions). The supplied Mult.tst and Mult.cmp
scripts are designed to test your program on representative data values.

I/O handling (Fill.asm): This program runs an infinite loop that listens to the
keyboard. When a key is pressed (any key), the program blackens the
screen by writing black in every pixel. When no key is pressed, the program
clears the screen by writing white in every pixel. You may choose to
blacken and clear the screen in any spatial pattern, as long as pressing a key
continuously for long enough will result in a fully blackened screen, and not
pressing any key for long enough will result in a cleared screen. This
program has a test script (Fill.tst) but no compare file—it should be checked
by visibly inspecting the simulated screen in the CPU emulator.

CPU emulator: This program, available in nand2tetris/tools, provides a visual
simulation of the Hack computer (see figure 4.8). The program’s GUI
shows the current states of the computer’s instruction memory (ROM), data
memory (RAM), the two registers A and D, the program counter PC, and the
ALU. It also displays the current state of the computer’s screen and allows
entering inputs through the keyboard.



Figure 4.8    The CPU emulator, with a program loaded in the instruction memory (ROM) and some
data in the data memory (RAM). The figure shows a snapshot taken during the program’s execution.

The typical way to use the CPU emulator is to load a machine language
program into the ROM, execute the code, and observe its impact on the
simulated hardware elements. Importantly, the CPU emulator enables
loading binary.hack files as well as symbolic .asm files, written in the Hack
assembly language. In the latter case, the emulator translates the assembly
program into binary code on the fly. Conveniently, the loaded code can be
viewed in both its binary and symbolic representations.

Since the supplied CPU emulator features a built-in assembler, there is no
need to use a standalone Hack assembler in this project.

Steps: We recommend proceeding as follows:

0.  The supplied CPU emulator is available in the nand2tetris/tools folder. If
you need help, consult the tutorial available at www.nand2tetris.org.

1.  Write/edit the Mult.asm program using a plain text editor. Start with the
skeletal program stored in projects/04/mult/Mult.asm.

2.  Load Mult.asm into the CPU emulator. This can be done either
interactively or by loading and executing the supplied Mult.tst script.

3.  Run the script. If you get any translation or run-time errors, go to step 1.

http://www.nand2tetris.org/


Follow steps 1–3 for writing the second program, using the projects/04/fill
folder.

Debugging tip: The Hack language is case-sensitive. A common assembly
programming error occurs when one writes, say, @foo and @Foo in different
parts of the program, thinking that both instructions refer to the same
symbol. In fact, the assembler will generate and manage two variables that
have nothing in common.

A web-based version of project 4 is available at www.nand2tetris.org.

4.5    Perspective

The Hack machine language is basic. Typical machine languages feature
more operations, more data types, more registers, and more instruction
formats. In terms of syntax, we have chosen to give Hack a lighter look and
feel than that of conventional assembly languages. In particular, we have
chosen a friendly syntax for the C-instruction, for example,  instead of
the more common prefix syntax add M,D used in many machine languages.
The reader should note, however, that this is just a syntax effect. For
example, the + character in the operation code  plays no algebraic role
whatsoever. Rather, the three-character string , taken as a whole, is
treated as a single assembly mnemonic, designed to code a single ALU
operation.

One of the main characteristics that gives machine languages their
particular flavor is the number of memory addresses that can be squeezed
into a single instruction. In this respect, the austere Hack language may be
described as a 1/2 address machine language: Since there is no room to
pack both an instruction code and a 15-bit address in a single 16-bit
instruction, operations involving memory access require two Hack
instructions: one for specifying the address on which we wish to operate,
and one for specifying the operation. In comparison, many machine
languages can specify an operation and at least one address in every
machine instruction.

http://www.nand2tetris.org/


Indeed, Hack assembly code typically ends up being mostly an
alternating sequence of A- and C-instructions: @sum followed by 
@LOOP followed by 0;JMP, and so on. If you find this coding style tedious or
peculiar, you should note that friendlier macro-instructions like  and
goto LOOP can be easily introduced into the language, making Hack
assembly code shorter and more readable. The trick is to extend the
assembler to translate each macro-instruction into the two Hack instructions
that it entails—a relatively simple tweak.

The assembler, mentioned many times in this chapter, is the program
responsible for translating symbolic assembly programs into executable
programs written in binary code. In addition, the assembler is responsible
for managing all the system- and user-defined symbols found in the
assembly program and for resolving them into physical memory addresses
that are injected into the generated binary code. We will return to this
translation task in chapter 6, which is dedicated to understanding and
building assemblers.

1.  By instantaneously we mean within the same clock cycle, or time unit.



 

5       Computer Architecture

Make everything as simple as possible, but not simpler.
—Albert Einstein (1879–1955)

This chapter is the pinnacle of the hardware part of our journey. We are now
ready to take the chips that we built in chapters 1–3 and integrate them into
a general-purpose computer system, capable of running programs written in
the machine language presented in chapter 4. The specific computer that we
will build, named Hack, has two important virtues. On the one hand, Hack
is a simple machine that can be constructed in a few hours, using previously
built chips and the supplied hardware simulator. On the other hand, Hack is
sufficiently powerful to illustrate the key operating principles and hardware
elements of any general-purpose computer. Therefore, building it will give
you a hands-on understanding of how modern computers work, and how
they are built.

Section 5.1 begins with an overview of the von Neumann architecture—a
central dogma in computer science underlying the design of almost all
modern computers. The Hack platform is a von Neumann machine variant,
and section 5.2 gives its exact hardware specification. Section 5.3 describes
how the Hack platform can be implemented from previously built chips, in
particular the ALU built in project 2 and the registers and memory devices
built in project 3. Section 5.4 describes the project in which you will build
the computer. Section 5.5 provides perspective. In particular, we compare
the Hack machine to industrial-strength computers and emphasize the
critical role that optimization plays in the latter.

The computer that will emerge from this effort will be as simple as
possible, but not simpler. On the one hand, the computer will be based on a



minimal and elegant hardware configuration. On the other hand, the
resulting configuration will be sufficiently powerful for executing programs
written in a Java-like programming language, presented in part II of the
book. This language will enable developing interactive computer games and
applications involving graphics and animation, delivering a solid
performance and a satisfying user experience. In order to realize these high-
level applications on the barebone hardware platform, we will need to build
a compiler, a virtual machine, and an operating system. This will be done in
part II. For now, let’s complete part I by integrating the chips that we’ve
built so far into a complete, general-purpose hardware platform.

5.1    Computer Architecture Fundamentals

5.1.1    The Stored Program Concept

Compared to all the machines around us, the most remarkable feature of the
digital computer is its amazing versatility. Here is a machine with a finite
and fixed hardware that can perform an infinite number of tasks, from
playing games to typesetting books to driving cars. This remarkable
versatility—a boon that we have come to take for granted—is the fruit of a
brilliant early idea called the stored program concept. Formulated
independently by several scientists and engineers in the 1930s, the stored
program concept is still considered the most profound invention in, if not
the very foundation of, modern computer science.

Like many scientific breakthroughs, the basic idea is simple. The
computer is based on a fixed hardware platform capable of executing a
fixed repertoire of simple instructions. At the same time, these instructions
can be combined like building blocks, yielding arbitrarily sophisticated
programs. Moreover, the logic of these programs is not embedded in the
hardware, as was customary in mechanical computers predating 1930.
Instead, the program’s code is temporarily stored in the computer’s
memory, like data, becoming what is known as software. Since the
computer’s operation manifests itself to the user through the currently
executing software, the same hardware platform can be made to behave
completely differently each time it is loaded with a different program.



5.1.2    The von Neumann Architecture

The stored program concept is the key element of both abstract and
practical computer models, most notably the Turing machine (1936) and the
von Neumann machine (1945). The Turing machine—an abstract artifact
describing a deceptively simple computer—is used mainly in theoretical
computer science for analyzing the logical foundations of computation. In
contrast, the von Neumann machine is a practical model that informs the
construction of almost all computer platforms today.

The von Neumann architecture, shown in figure 5.1, is based on a
Central Processing Unit (CPU), interacting with a memory device,
receiving data from some input device, and emitting data to some output
device. At the heart of this architecture lies the stored program concept: the
computer’s memory stores not only the data that the computer manipulates
but also the instructions that tell the computer what to do. Let us explore
this architecture in some detail.

Figure 5.1    A generic von Neumann computer architecture.

5.1.3    Memory

The computer’s Memory can be discussed from both physical and logical
perspectives. Physically, the memory is a linear sequence of addressable,
fixed-size registers, each having a unique address and a value. Logically,
this address space serves two purposes: storing data and storing
instructions. Both the “instruction words” and the “data words” are
implemented exactly the same way—as sequences of bits.



All the memory registers—irrespective of their roles—are handled the
same way: to access a particular memory register, we supply the register’s
address. This action, also referred to as addressing, provides an immediate
access to the register’s data. The term Random Access Memory derives from
the important requirement that each randomly selected memory register can
be reached instantaneously, that is, within the same cycle (or time step),
irrespective of the memory size and the register’s location. This
requirement clearly carries its weight in memory units that have billions of
registers. Readers who built the RAM devices in project 3 know that we’ve
already satisfied this requirement.

In what follows, we’ll refer to the memory area dedicated to data as data
memory and to the memory area dedicated to instructions as instruction
memory. In some variants of the von Neumann architecture, the data
memory and the instruction memory are allocated and managed
dynamically, as needed, within the same physical address space. In other
variants, the data memory and the instruction memory are kept in two
physically separate memory units, each having its own distinct address
space. Both variants have pros and cons, as we’ll discuss later.

Data memory: High-level programs are designed to manipulate abstract
artifacts like variables, arrays, and objects. Yet at the hardware level, these
data abstractions are realized by binary values stored in memory registers.
In particular, following translation to machine language, abstract array
processing and get/set operations on objects are reduced to reading and
writing selected memory registers. To read a register, we supply an address
and probe the value of the selected register. To write to a register, we supply
an address and store a new value in the selected register, overriding its
previous value.

Instruction memory: Before a high-level program can be executed on a
target computer, it must first be translated into the machine language of the
target computer. Each high-level statement is translated into one or more
low-level instructions, which are then written as binary values to a file
called the binary, or executable, version of the program. Before running a
program, we must first load its binary version from a mass storage device,
and serialize its instructions into the computer’s instruction memory.



From the pure focus of computer architecture, how a program is loaded
into the computer’s memory is considered an external issue. What’s
important is that when the CPU is called upon to execute a program, the
program’s code will already reside in the computer’s memory.

5.1.4    Central Processing Unit

The Central Processing Unit (CPU)—the centerpiece of the computer’s
architecture—is in charge of executing the instructions of the currently
running program. Each instruction tells the CPU which computation to
perform, which registers to access, and which instruction to fetch and
execute next. The CPU executes these tasks using three main elements: An
Arithmetic Logic Unit (ALU), a set of registers, and a control unit.

Arithmetic Logic Unit: The ALU chip is built to perform all the low-level
arithmetic and logical operations featured by the computer. A typical ALU
can add two given values, compute their bitwise And, compare them for
equality, and so on. How much functionality the ALU should feature is a
design decision. In general, any function not supported by the ALU can be
realized later, using system software running on top of the hardware
platform. The trade-off is simple: hardware implementations are typically
more efficient but result in more expensive hardware, while software
implementations are inexpensive and less efficient.

Registers: In the course of performing computations, the CPU is often
required to store interim values temporarily. In theory, we could have stored
these values in memory registers, but this would entail long-distance trips
between the CPU and the RAM, which are two separate chips. These delays
would frustrate the CPU-resident ALU, which is an ultra-fast combinational
calculator. The result will be a condition known as starvation, which is
what happens when a fast processor depends on a sluggish data store for
supplying its inputs and consuming its outputs.

In order to avert starvation and boost performance, we normally equip
the CPU with a small set of high-speed (and relatively expensive) registers,
acting as the processor’s immediate memory. These registers serve various
purposes: data registers store interim values, address registers store values



that are used to address the RAM, the program counter stores the address of
the instruction that should be fetched and executed next, and the instruction
register stores the current instruction. A typical CPU uses a few dozen such
registers, but our frugal Hack computer will need only three.

Control: A computer instruction is a structured package of agreed-upon
micro-codes, that is, sequences of one or more bits designed to signal
different devices what to do. Thus, before an instruction can be executed, it
must first be decoded into its micro-codes. Next, each micro-code is routed
to its designated hardware device (ALU, registers, memory) within the
CPU, where it tells the device how to partake in the overall execution of the
instruction.

Fetch-Execute: In each step (cycle) of the program’s execution, the CPU
fetches a binary machine instruction from the instruction memory, decodes
it, and executes it. As a side effect of the instruction’s execution, the CPU
also figures out which instruction to fetch and execute next. This repetitive
process is sometimes referred to as the fetch-execute cycle.

5.1.5    Input and Output

Computers interact with their external environments using a great variety of
input and output (I/O) devices: screens, keyboards, storage devices,
printers, microphones, speakers, network interface cards, and so on, not to
mention the bewildering array of sensors and activators embedded in
automobiles, cameras, hearing aids, alarm systems, and all the gadgets
around us. There are two reasons why we don’t concern ourselves with
these I/O devices. First, every one of them represents a unique piece of
machinery, requiring a unique knowledge of engineering. Second, for that
very same reason, computer scientists have devised clever schemes for
abstracting away this complexity and making all I/O devices look exactly
the same to the computer. The key element in this abstraction is called
memory-mapped I/O.

The basic idea is to create a binary emulation of the I/O device, making it
appear to the CPU as if it were a regular linear memory segment. This is
done by allocating, for each I/O device, a designated area in the computer’s



memory that acts as its memory map. In the case of an input device like a
keyboard, the memory map is made to continuously reflect the physical
state of the device: when the user presses a key on the keyboard, a binary
code representing that key appears in the keyboard’s memory map. In the
case of an output device like a screen, the screen is made to continuously
reflect the state of its designated memory map: when we write a bit in the
screen’s memory map, a respective pixel is turned on or off on the screen.

The I/O devices and the memory maps are refreshed, or synchronized,
many times per second, so the response time from the user’s perspective
appears to be instantaneous. Programmatically, the key implication is that
low-level computer programs can access any I/O device by manipulating its
designated memory map.

The memory map convention is based on several agreed-upon contracts.
First, the data that drives each I/O device must be serialized, or mapped,
onto the computer’s memory, hence the name memory map. For example,
the screen, which is a two-dimensional grid of pixels, is mapped on a one-
dimensional block of fixed-size memory registers. Second, each I/O device
is required to support an agreed-upon interaction protocol so that programs
will be able to access it in a predictable manner. For example, it should be
decided which binary codes should represent which keys on the keyboard.
Given the multitude of computer platforms, I/O devices, and different
hardware and software vendors, one can appreciate the crucial role that
agreed-upon industry-wide standards play in realizing these low-level
interaction contracts.

The practical implications of memory-mapped I/O are significant: The
computer system is totally independent of the number, nature, or make of
the I/O devices that interact, or may interact, with it. Whenever we want to
connect a new I/O device to the computer, all we have to do is allocate to it
a new memory map and take note of the map’s base address (these onetime
configurations are carried out by the so-called installer programs). Another
necessary element is a device driver program, which is added to the
computer’s operating system. This program bridges the gap between the I/O
device’s memory map data and the way this data is actually rendered on, or
generated by, the physical I/O device.



5.2    The Hack Hardware Platform: Specification

The architectural framework described thus far is characteristic of any
general-purpose computer system. We now turn to describe one specific
variant of this architecture: the Hack computer. As usual in Nand to Tetris,
we start with the abstraction, focusing on what the computer is designed to
do. The computer’s implementation—how it does it—is described later.

5.2.1    Overview

The Hack platform is a 16-bit von Neumann machine designed to execute
programs written in the Hack machine language. In order to do so, the Hack
platform consists of a CPU, two separate memory modules serving as
instruction memory and data memory, and two memory-mapped I/O
devices: a screen and a keyboard.

The Hack computer executes programs that reside in an instruction
memory. In physical implementations of the Hack platform, the instruction
memory can be implemented as a ROM (Read-Only Memory) chip that is
preloaded with the required program. Software-based emulators of the Hack
computer support this functionality by providing means for loading the
instruction memory from a text file containing a program written in the
Hack machine language.

The Hack CPU consists of the ALU built in project 2 and three registers
named Data register (D), Address register (A), and Program Counter (PC).
The D register and the A register are identical to the Register chip built in
project 3, and the program counter is identical to the PC chip built in project
3. While the D register is used solely for storing data values, the A register
serves one of three different purposes, depending on the context in which it
is used: storing a data value (like the D register), selecting an address in the
instruction memory, or selecting an address in the data memory.

The Hack CPU is designed to execute instructions written in the Hack
machine language. In case of an A-instruction, the 16 bits of the instruction
are treated as a binary value which is loaded as is into the A register. In case
of a C-instruction, the instruction is treated as a capsule of control bits that
specify various micro-operations to be performed by various chip-parts



within the CPU. We now turn to describe how the CPU materializes these
micro-codes into concrete actions.

5.2.2    Central Processing Unit

The Hack CPU interface is shown in figure 5.2. The CPU is designed to
execute 16-bit instructions according to the Hack machine language
specification presented in chapter 4. The CPU consists of an ALU, two
registers named A and D, and a program counter named PC (these internal
chip-parts are not seen outside the CPU). The CPU expects to be connected
to an instruction memory, from which it fetches instructions for execution,
and to a data memory, from which it can read, and into which it can write,
data values. The inM input and the outM output hold the values referred to as
M in the C-instruction syntax. The addressM output holds the address at
which outM should be written.

Figure 5.2    The Hack Central Processing Unit (CPU) interface.



If the instruction input is an A-instruction, the CPU loads the 16-bit
instruction value into the A register. If instruction is a C-instruction, then (i)
the CPU causes the ALU to perform the computation specified by the
instruction and (ii) the CPU causes this value to be stored in the subset of
{A,D,M} destination registers specified by the instruction. If one of the
destination registers is M, the CPU’s outM output is set to the ALU output,
and the CPU’s writeM output is set to 1. Otherwise, writeM is set to 0, and any
value may appear in outM.

As long as the reset input is 0, the CPU uses the ALU output and the jump
bits of the current instruction to decide which instruction to fetch next. If
reset is 1, the CPU sets pc to 0. Later in the chapter we’ll connect the CPU’s
pc output to the address input of the instruction memory chip, causing the
latter to emit the next instruction. This configuration will realize the fetch
step of the fetch-execute cycle.

The CPU’s outM and writeM outputs are realized by combinational logic;
thus, they are affected instantaneously by the instruction’s execution. The
addressM and pc outputs are clocked: although they are affected by the
instruction’s execution, they commit to their new values only in the next
time step.

5.2.3    Instruction Memory

The Hack instruction memory, called ROM32K, is specified in figure 5.3.

Figure 5.3    The Hack instruction memory interface.



5.2.4    Input/Output

Access to the input/output devices of the Hack computer is made possible
by the computer’s data memory, a read/write RAM device consisting of
32K addressable 16-bit registers. In addition to serving as the computer’s
general-purpose data store, the data memory also interfaces between the
CPU and the computer’s input/output devices, as we now turn to describe.

The Hack platform can be connected to two peripheral devices: a screen
and a keyboard. Both devices interact with the computer platform through
designated memory areas called memory maps. Specifically, images can be
drawn on the screen by writing 16-bit values in a designated memory
segment called a screen memory map. Similarly, which key is presently
pressed on the keyboard can be determined by probing a designated 16-bit
memory register called a keyboard memory map.

The screen memory map and the keyboard memory map are continuously
updated, many times per second, by peripheral refresh logic that is external
to the computer. Thus, when one or more bits are changed in the screen
memory map, the change is immediately reflected on the physical screen.
Likewise, when a key is pressed on the physical keyboard, the character
code of the pressed key immediately appears in the keyboard memory map.
With that in mind, when a low-level program wants to read something from
the keyboard, or write something on the screen, the program manipulates
the respective memory maps of these I/O devices.

In the Hack computer platform, the screen memory map and the
keyboard memory map are realized by two built-in chips named Screen and
Keyboard. These chips behave like standard memory devices, with the
additional side effects of continuously synchronizing between the I/O
devices and their respective memory maps. We now turn to specify these
chips in detail.

Screen: The Hack computer can interact with a physical screen consisting
of 256 rows of 512 black-and-white pixels each, spanning a grid of 131,072
pixels. The computer interfaces with the physical screen via a memory map,
implemented by an 8K memory chip of 16-bit registers. This chip, named
Screen, behaves like a regular memory chip, meaning that it can be read and
written to using the regular RAM interface. In addition, the Screen chip



features the side effect that the state of any one of its bits is continuously
reflected by a respective pixel in the physical screen 

The physical screen is a two-dimensional address space, where each pixel
is identified by a row and a column. High-level programming languages
typically feature a graphics library that allows accessing individual pixels
by supplying (row,column) coordinates. However, the memory map that
represents this two-dimensional screen at the low level is a one-dimensional
sequence of 16-bit words, each identified by supplying an address.
Therefore, individual pixels cannot be accessed directly. Rather, we have to
figure out which word the target bit is located in and then access, and
manipulate, the entire 16-bit word this pixel belongs to. The exact mapping
between these two address spaces is specified in figure 5.4. This mapping
will be realized by the screen driver of the operating system that we’ll
develop in part II of the book.

Figure 5.4    The Hack Screen chip interface.

Keyboard: The Hack computer can interact with a physical keyboard, like
that of a personal computer. The computer interfaces with the physical
keyboard via a memory map, implemented by the Keyboard chip, whose
interface is given in figure 5.5. The chip interface is identical to that of a
read-only, 16-bit register. In addition, the Keyboard chip has the side effect of
reflecting the state of the physical keyboard: When a key is pressed on the



physical keyboard, the 16-bit code of the respective character is emitted by
the output of the Keyboard chip. When no key is pressed, the chip outputs 0.
The character set supported by the Hack computer is given in appendix 5,
along with the code of each character.

Figure 5.5    The Hack Keyboard chip interface.

5.2.5    Data Memory

The overall address space of the Hack data memory is realized by a chip
named Memory. This chip is essentially a package of three 16-bit chip-parts:
RAM16K (a RAM chip of 16K registers, serving as a general-purpose data
store), Screen (a built-in RAM chip of 8K registers, acting as the screen
memory map), and Keyboard (a built-in register chip, acting as the keyboard
memory map). The complete specification is given in figure 5.6.



Figure 5.6    The Hack data memory interface. Note that the decimal values 16384 and 24576 are
4000 and 6000 in hexadecimal.

5.2.6    Computer

The topmost element in the Hack hardware hierarchy is a computer-on-a-
chip named Computer (figure 5.7). The Computer chip can be connected to a
screen and a keyboard. The user sees the screen, the keyboard, and a single
bit input named reset. When the user sets this bit to 1 and then to 0, the
computer starts executing the currently loaded program. From this point
onward, the user is at the mercy of the software.



Figure 5.7    Interface of Computer, the topmost chip in the Hack hardware platform.

This startup logic realizes what is sometimes referred to as “booting the
computer.” For example, when you boot up a PC or a cell phone, the device
is set up to run a ROM-resident program. This program, in turn, loads the
operating system’s kernel (also a program) into the RAM and starts
executing it. The kernel then executes a process (yet another program) that
listens to the computer’s input devices, that is, keyboard, mouse, touch
screen, microphone, and so on. At some point the user will do something,
and the OS will respond by running another process or invoking some
program.

In the Hack computer, the software consists of a binary sequence of 16-
bit instructions, written in the Hack machine language and stored in the
computer’s instruction memory. Typically, this binary code will be the low-
level version of a program written in some high-level language and
translated by a compiler into the Hack machine language. The compilation
process will be discussed and implemented in part II of the book.

5.3    Implementation



This section describes a hardware implementation that realizes the Hack
computer specified in the previous section. As usual, we don’t give exact
building instructions. Rather, we expect readers to discover and complete
the implementation details on their own. All the chips described below can
be built in HDL and simulated on a personal computer using the supplied
hardware simulator.

5.3.1    The Central Processing Unit

The implementation of the Hack CPU entails building a logic gate
architecture capable of (i) executing a given Hack instruction and (ii)
determining which instruction should be fetched and executed next. In order
to do so, we will use gate logic for decoding the current instruction, an
Arithmetic Logic Unit (ALU) for computing the function specified by the
instruction, a set of registers for storing the resulting value, as specified by
the instruction, and a program counter for keeping track of which
instruction should be fetched and executed next. Since all the underlying
building blocks (ALU, registers, PC, and elementary logic gates) were
already built in previous chapters, the key question that we now face is how
to connect these chip-parts judiciously in a way that realizes the desired
CPU operation. One possible configuration is illustrated in figure 5.8 and
explained in the following pages.



Figure 5.8    Proposed implementation of the Hack CPU, showing an incoming 16-bit instruction.
We use the instruction notation cccccccccccccccc to emphasize that in the case of a C-instruction, the
instruction is treated as a capsule of control bits, designed to control different CPU chip-parts. In this
diagram, every c symbol entering a chip-part stands for some control bit extracted from the
instruction (in the case of the ALU, the c’s input stands for the six control bits that instruct the ALU
what to compute). Taken together, the distributed behavior induced by these control bits ends up
executing the instruction. We don’t specify which bits go where, since we want readers to answer
these questions themselves.

Instruction decoding: Let’s start by focusing on the CPU’s instruction input.
This 16-bit value represents either an A-instruction (when the leftmost bit is
0) or a C-instruction (when the leftmost bit is 1). In case of an A-instruction,
the instruction bits are interpreted as a binary value that should be loaded
into the A register. In case of a C-instruction, the instruction is treated as a
capsule of control bits 1xxaccccccdddjjj, as follows. The a and cccccc bits code
the comp part of the instruction; the ddd bits code the dest part of the
instruction; the jjj bits code the jump part of the instruction. The xx bits are
ignored.

Instruction execution: In case of an A-instruction, the 16 bits of the
instruction are loaded as is into the A register (actually, this is a 15-bit value,
since the MSB is the op-code 0). In case of a C-instruction, the a-bit
determines whether the ALU input will be fed from the A register value or
from the incoming M value. The cccccc bits determine which function the
ALU will compute. The ddd bits determine which registers should accept
the ALU output. The jjj bits are used for determining which instruction to
fetch next.

The CPU architecture should extract the control bits described above
from the instruction input and route them to their chip-part destinations,
where they instruct the chip-parts what to do in order to partake in the
instruction’s execution. Note that every one of these chip-parts is already
designed to carry out its intended function. Therefore, the CPU design is
mostly a matter of connecting existing chips in a way that realizes this
execution model.

Instruction fetching: As a side effect of executing the current instruction,
the CPU determines, and outputs, the address of the instruction that should



be fetched and executed next. The key element in this subtask is the
Program Counter—a CPU chip-part whose role is to always store the
address of the next instruction.

According to the Hack computer specification, the current program is
stored in the instruction memory, starting at address 0. Hence, if we wish to
start (or restart) a program’s execution, we should set the Program Counter
to 0. That’s why in figure 5.8 the reset input of the CPU is fed directly into
the reset input of the PC chip-part. If we assert this bit, we’ll effect 
causing the computer to fetch and execute the first instruction in the
program.

What should we do next? Normally, we’d like to execute the next
instruction in the program. Therefore, and assuming that the reset input had
been set “back” to 0, the default operation of the program counter is PC++.

But what if the current instruction includes a jump directive? According
to the language specification, execution always branches to the instruction
whose address is the current value of A. Thus, the CPU implementation
must realize the following Program Counter behavior: if jump then 

How can we effect this behavior using gate logic? The answer is hinted
in figure 5.8. Note that the output of the A register feeds into the input of the
PC register. Thus, if we assert the PC’s load-bit, we’ll enable the operation 

 rather than the default operation PC++. We should do this only if we
have to effect a jump. Which leads to the next question: How do we know if
we have to effect a jump? The answer depends on the three j-bits of the
current instruction and the two ALU output bits zr and ng. Taken together,
these bits can be used to determine whether the jump condition is satisfied
or not.

We’ll stop here, lest we rob readers of the pleasure of completing the
CPU implementation themselves. We hope that as they do so, they will
savor the clockwork elegance of the Hack CPU.

5.3.2    Memory

The Memory chip of the Hack computer is an aggregate of three chip-parts:
RAM16K, Screen, and Keyboard. This modularity, though, is implicit: Hack



machine language programs see a single address space, ranging from
address 0 to address 24576 (in hexadecimal: 6000).

The Memory chip interface is shown in figure 5.6. The implementation of
this interface should realize the continuum effect just described. For
example, if the address input of the Memory chip happens to be 16384, the
implementation should access address 0 in the Screen chip, and so on. Once
again, we prefer not to provide too many details and let you figure out the
rest of the implementation yourself.

5.3.3    Computer

We have reached the end of our hardware journey. The topmost Computer
chip can be realized using three chip-parts: the CPU, the data Memory chip,
and the instruction memory chip, ROM32K. Figure 5.9 gives the details.

Figure 5.9    Proposed implementation of Computer, the topmost chip in the Hack platform.

The Computer implementation is designed to realize the following fetch-
execute cycle: When the user asserts the reset input, the CPU’s pc output
emits 0, causing the instruction memory (ROM32K) to emit the first
instruction in the program. The instruction will be executed by the CPU,
and this execution may involve reading or writing a data memory register.



In the process of executing the instruction, the CPU figures out which
instruction to fetch next, and emits this address through its pc output. The
CPU’s pc output feeds the address input of the instruction memory, causing
the latter to output the instruction that ought to be executed next. This
output, in turn, feeds the instruction input of the CPU, closing the fetch-
execute cycle.

5.4    Project

Objective: Build the Hack computer, culminating in the topmost Computer
chip.

Resources: All the chips described in this chapter should be written in HDL
and tested on the supplied hardware simulator, using the test programs
described below.

Contract: Build a hardware platform capable of executing programs
written in the Hack machine language. Demonstrate the platform’s
operations by having your Computer chip run the three supplied test
programs.

Test programs: A natural way to test the overall Computer chip
implementation is to have it execute sample programs written in the Hack
machine language. In order to run such a test, one can write a test script that
loads the Computer chip into the hardware simulator, loads a program from
an external text file into the ROM32K chip-part (the instruction memory), and
then runs the clock enough cycles to execute the program. We provide three
such test programs, along with corresponding test scripts and compare files:

Add.hack: Adds the two constants 2 and 3, and writes the result in RAM[0].
Max.hack: Computes the maximum of RAM[0] and RAM[1] and writes the
result in RAM[2].
Rect.hack: Draws on the screen a rectangle of RAM[0] rows of 16 pixels
each. The rectangle’s top-left corner is located at the top-left corner of the
screen.



Before testing your Computer chip on any one of these programs, review the
test script associated with the program, and be sure to understand the
instructions given to the simulator. If needed, consult appendix 3 (“Test
Description Language”).

Steps: Implement the computer in the following order:

Memory: This chip can be built along the general outline given in figure 5.6,
using three chip-parts: RAM16K, Screen, and Keyboard. Screen and Keyboard are
available as built-in chips; there is no need to build them. Although the
RAM16K chip was built in project 3, we recommend using its built-in version
instead.

CPU: The central processing unit can be built according to the proposed
implementation given in figure 5.8. In principle, the CPU can use the ALU
built in project 2, the Register and PC chips built in project 3, and logic gates
from project 1, as needed. However, we recommend using the built-in
versions of all these chips (in particular, use the built-in registers ARegister,
DRegister, and PC). The built-in chips have exactly the same functionality as
the memory chips built in previous projects, but they feature GUI side
effects that make the testing and simulation of your work easier.

In the course of implementing the CPU, you may be tempted to specify
and build internal (“helper”) chips of your own. Be advised that there is no
need to do so; the Hack CPU can be implemented elegantly and efficiently
using only the chip-parts that appear in figure 5.8, plus some elementary
logic gates built in project 1 (of which it is best to use their built-in
versions).

Instruction memory: Use the built-in ROM32K chip.

Computer: The computer can be built according to the proposed
implementation given in figure 5.9.

Hardware simulator: All the chips in this project, including the topmost
Computer chip, can be implemented and tested using the supplied hardware
simulator. Figure 5.10 is a screenshot of testing the Rect.hack program on a
Computer chip implementation.



Figure 5.10    Testing the Computer chip on the supplied hardware simulator. The stored program is
Rect, which draws a rectangle of RAM[0] rows of 16 pixels each, all black, at the top-left of the
screen.

A web-based version of project 5 is available at www.nand2tetris.org.

5.5    Perspective

Following the Nand to Tetris spirit, the architecture of the Hack computer is
minimal. Typical computer platforms feature more registers, more data
types, more powerful ALUs, and richer instruction sets. Most of these
differences, though, are quantitative. From a qualitative standpoint, almost
all digital computers, including Hack, are based on the same conceptual
architecture: the von Neumann machine.

In terms of purpose, computer systems can be classified into two
categories: general-purpose computers and single-purpose computers.
General-purpose computers, like PCs and cell phones, typically interact
with a user. They are designed to execute many programs and easily switch
from one program to another. Single-purpose computers are usually
embedded in other systems like automobiles, cameras, media streamers,
medical devices, industrial controllers, and so on. For any particular
application, a single program is burned into the dedicated computer’s ROM

http://www.nand2tetris.org/


(Read-Only Memory). For example, in some game consoles, the game
software resides in an external cartridge, which is a replaceable ROM
module encased in a fancy package. Although general-purpose computers
are typically more complex and versatile than dedicated computers, they all
share the same basic architectural ideas: stored programs, fetch-decode-
execute logic, CPU, registers, and counters.

Most general-purpose computers use a single address space for storing
both programs and data. Other computers, like Hack, use two separate
address spaces. The latter configuration, which for historical reasons is
called Harvard architecture, is less flexible in terms of ad hoc memory
utilization but has distinct advantages. First, it is easier and cheaper to
build. Second, it is often faster than the single address space configuration.
Finally, if the size of the program that the computer has to run is known in
advance, the size of the instruction memory can be optimized and fixed
accordingly. For these reasons, the Harvard architecture is the architecture
of choice in many dedicated, single-purpose, embedded computers.

Computers that use the same address space for storing instructions and
data face the following challenge: How can we feed the address of the
instruction, and the address of the data register on which the instruction has
to operate, into the same address input of the shared memory device?
Clearly, we cannot do it at the same time. The standard solution is to base
the computer operation on a two-cycle logic. During the fetch cycle, the
instruction address is fed to the address input of the memory, causing it to
immediately emit the current instruction, which is then stored in an
instruction register. In the subsequent execute cycle, the instruction is
decoded, and the data address on which it has to operate is fed to the same
address input. In contrast, computers that use separate instruction and data
memories, like Hack, benefit from a single-cycle fetch-execute logic, which
is faster and easier to handle. The price is having to use separate data and
instruction memory units, although there is no need to use an instruction
register.

The Hack computer interacts with a screen and a keyboard. General-
purpose computers are typically connected to multiple I/O devices like
printers, storage devices, network connections, and so on. Also, typical
display devices are much fancier than the Hack screen, featuring more
pixels, more colors, and faster rendering performance. Still, the basic



principle that each pixel is driven by a memory-resident binary value is
maintained: instead of a single bit controlling the pixel’s black or white
color, typically 8 bits are devoted to controlling the brightness level of each
of several primary colors that, taken together, produce the pixel’s ultimate
color. The result is millions of possible colors, more than the human eye can
discern.

The mapping of the Hack screen on the computer’s main memory is
simplistic. Instead of having memory bits drive pixels directly, many
computers allow the CPU to send high-level graphic instructions like “draw
a line” or “draw a circle” to a dedicated graphics chip or a standalone
graphics processing unit, also known as GPU. The hardware and low-level
software of these dedicated graphical processors are especially optimized
for rendering graphics, animation, and video, offloading from the CPU and
the main computer the burden of handling these voracious tasks directly.

Finally, it should be stressed that much of the effort and creativity in
designing computer hardware is invested in achieving better performance.
Many hardware architects devote their work to speeding up memory access,
using clever caching algorithms and data structures, optimizing access to
I/O devices, and applying pipelining, parallelism, instruction prefetching,
and other optimization techniques that were completely sidestepped in this
chapter.

Historically, attempts to accelerate processing performance have led to
two main camps of CPU design. Advocates of the Complex Instruction Set
Computing (CISC) approach argued for achieving better performance by
building more powerful processors featuring more elaborate instruction
sets. Conversely, the Reduced Instruction Set Computing (RISC) camp built
simpler processors and tighter instruction sets, arguing that these actually
deliver faster performance in benchmark tests. The Hack computer does not
enter this debate, featuring neither a strong instruction set nor special
hardware acceleration techniques.



 

6       Assembler

What’s in a name? That which we call a rose by any other name would smell as sweet.
—Shakespeare, Romeo and Juliet

In the previous chapters, we completed the development of a hardware
platform designed to run programs in the Hack machine language. We
presented two versions of this language—symbolic and binary—and
explained that symbolic programs can be translated into binary code using a
program called an assembler. In this chapter we describe how assemblers
work, and how they are built. This will lead to the construction of a Hack
assembler—a program that translates programs written in the Hack
symbolic language into binary code that can execute on the barebone Hack
hardware.

Since the relationship between symbolic instructions and their
corresponding binary codes is straightforward, implementing an assembler
using a high-level programming language is not a difficult task. One
complication arises from allowing assembly programs to use symbolic
references to memory addresses. The assembler is expected to manage these
symbols and resolve them to physical memory addresses. This task is
normally done using a symbol table—a commonly used data structure.

Implementing the assembler is the first in a series of seven software
development projects that accompany part II of the book. Developing the
assembler will equip you with a basic set of general skills that will serve
you well throughout all these projects and beyond: handling command-line
arguments, handling input and output text files, parsing instructions,
handling white space, handling symbols, generating code, and many other
techniques that come into play in many software development projects.



If you have no programming experience, you can develop a paper-based
assembler. This option is described in the web-based version of project 6,
available at www.nand2tetris.org.

6.1    Background

Machine languages are typically specified in two flavors: binary and
symbolic. A binary instruction, for example,
11000010000000110000000000000111, is an agreed-upon package of micro-codes
designed to be decoded and executed by some target hardware platform. For
example, the instruction’s leftmost 8 bits, 11000010, can represent an
operation like “load.” The next 8 bits, 00000011, can represent a register, say
R3. The remaining 16 bits, 0000000000000111, can represent a value, say 7.
When we set out to build a hardware architecture and a machine language,
we can decide that this particular 32-bit instruction will cause the hardware
to effect the operation “load the constant 7 into register R3.” Modern
computer platforms support hundreds of such possible operations. Thus,
machine languages can be complex, involving many operation codes,
memory addressing modes, and instruction formats.

Clearly, specifying these operations in binary code is a pain. A natural
solution is using an agreed-upon equivalent symbolic syntax, say, “load
R3,7”. The load operation code is sometimes called a mnemonic, which in
Latin means a pattern of letters designed to help with remembering
something. Since the translation from mnemonics and symbols to binary
code is straightforward, it makes sense to write low-level programs directly
in symbolic notation and have a computer program translate them into
binary code. The symbolic language is called assembly, and the translator
program assembler. The assembler parses each assembly instruction into its
underlying fields, for example, load, R3, and 7, translates each field into its
equivalent binary code, and finally assembles the generated bits into a
binary instruction that can be executed by the hardware. Hence the name
assembler.

Symbols: Consider the symbolic instruction goto 312. Following translation,
this instruction causes the computer to fetch and execute the instruction
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stored in address 312, which may be the beginning of some loop. Well, if it’s
the beginning of a loop, why not mark this point in the assembly program
with a descriptive label, say LOOP, and use the command goto LOOP instead
of goto 312? All we have to do is record somewhere that LOOP stands for 312.
When we translate the program into binary code, we replace each
occurrence of LOOP with 312. That’s a small price to pay for the gain in
program readability and portability.

In general, assembly languages use symbols for three purposes:

Labels: Assembly programs can declare and use symbols that mark
various locations in the code, for example, LOOP and END.
Variables: Assembly programs can declare and use symbolic variables, for
example, i and sum.
Predefined symbols: Assembly programs can refer to special addresses in
the computer’s memory using agreed-upon symbols, for example, SCREEN
and KBD.

Of course, there is no free lunch. Someone must be responsible for
managing all these symbols. In particular, someone must remember that
SCREEN stands for 16384, that LOOP stands for 312, that sum stands for some
other address, and so on. This symbol-handling task is one of the most
important functions of the assembler.

Example: Figure 6.1 lists two versions of the same program written in the
Hack machine language. The symbolic version includes all sorts of things
that humans are fond of seeing in computer programs: comments, white
space, indentation, symbolic instructions, and symbolic references. None of
these embellishments concern computers, which understand one thing only:
bits. The agent that bridges the gap between the symbolic code convenient
for humans and the binary code understood by the computer is the
assembler.



Figure 6.1    Assembly code, translated to binary code using a symbol table. The line numbers,
which are not part of the code, are listed for reference.

Let us ignore for now all the details in figure 6.1, as well as the symbol
table, and make some general observations. First, note that although the line
numbers are not part of the code, they play an important, albeit implicit,
role in the translation process. If the binary code will be loaded into the
instruction memory starting at address 0, then the line number of each
instruction will coincide with its memory address. Clearly, this observation
should be of interest to the assembler. Second, note that comments and label
declarations generate no code, and that’s why the latter are sometimes
called pseudo-instructions. Finally, and stating the obvious, note that in
order to write an assembler for some machine language, the assembler’s
developer must get a complete specification of the language’s symbolic and
binary syntax.

With that in mind, we now turn to specify the Hack machine language.

6.2    The Hack Machine Language Specification



The Hack assembly language and its equivalent binary representation were
described in chapter 4. The language specification is repeated here for ease
of reference. This specification is the contract that Hack assemblers must
implement, one way or another.

6.2.1    Programs

Binary Hack program: A binary Hack program is a sequence of text lines,
each consisting of sixteen 0 and 1 characters. If the line starts with a 0, it
represents a binary A-instruction. Otherwise, it represents a binary C-
instruction.

Assembly Hack program: An assembly Hack program is a sequence of
text lines, each being an assembly instruction, a label declaration, or a
comment:

Assembly instruction: A symbolic A-instruction or a symbolic C-
instruction (see figure 6.2).
Label declaration: A line of the form (xxx), where xxx is a symbol.
Comment: A line beginning with two slashes (//) is considered a comment
and is ignored.



Figure 6.2    The Hack instruction set, showing both symbolic mnemonics and their corresponding
binary codes.

6.2.2    Symbols

Symbols in Hack assembly programs fall into three categories: predefined
symbols, label symbols, and variable symbols.

Predefined symbols: Any Hack assembly program is allowed to use
predefined symbols, as follows. R0, R1, …, R15 stand for 0, 1, … 15,
respectively. SP, LCL, ARG, THIS, THAT stand for 0, 1, 2, 3, 4, respectively.
SCREEN and KBD stand for 16384 and 24576, respectively. The values of
these symbols are interpreted as addresses in the Hack RAM.

Label symbols: The pseudo-instruction (xxx) defines the symbol xxx to
refer to the location in the Hack ROM holding the next instruction in the
program. A label symbol can be defined once and can be used anywhere in
the assembly program, even before the line in which it is defined.



Variable symbols: Any symbol xxx appearing in an assembly program that
is not predefined and is not defined elsewhere by a label declaration (xxx) is
treated as a variable. Variables are mapped to consecutive RAM locations
as they are first encountered, starting at RAM address 16. Thus, the first
variable encountered in a program is mapped to RAM[16], the second to
RAM[17], and so on.

6.2.3    Syntax Conventions

Symbols: A symbol can be any sequence of letters, digits, underscore (_),
dot (.), dollar sign ($), and colon (:) that does not begin with a digit.

Constants: May appear only in A-instructions of the form @xxx. The
constant xxx is a value in the range 0–32767 and is written in decimal
notation.

White space: Leading space characters and empty lines are ignored.

Case conventions: All the assembly mnemonics (like  JEQ, and so on)
must be written in uppercase. The remaining symbols—labels and variable
names—are case-sensitive. The recommended convention is to use
uppercase for labels and lowercase for variables.

This completes the Hack machine language specification.

6.3    Assembly-to-Binary Translation

This section describes how to translate Hack assembly programs into binary
code. Although we focus on developing an assembler for the Hack
language, the techniques that we present are applicable to any assembler.

The assembler takes as input a stream of assembly instructions and
generates as output a stream of translated binary instructions. The resulting
code can be loaded as is into the computer memory and executed. In order
to carry out the translation process, the assembler must handle instructions
and symbols.



6.3.1    Handling Instructions

For each assembly instruction, the assembler

parses the instruction into its underlying fields;
for each field, generates the corresponding bit-code, as specified in figure
6.2;
if the instruction contains a symbolic reference, resolves the symbol into
its numeric value;
assembles the resulting binary codes into a string of sixteen 0 and 1
characters; and
writes the assembled string to the output file.

6.3.2    Handling Symbols

Assembly programs are allowed to use symbolic labels (destinations of goto
instructions) before the symbols are defined. This convention makes the life
of assembly code writers easier and that of assembler developers harder. A
common solution is to develop a two-pass assembler that reads the code
twice, from start to end. In the first pass, the assembler builds a symbol
table, adds all the label symbols to the table, and generates no code. In the
second pass, the assembler handles the variable symbols and generates
binary code, using the symbol table. Here are the details.

Initialization: The assembler creates a symbol table and initializes it with
all the predefined symbols and their pre-allocated values. In figure 6.1, the
result of the initialization stage is the symbol table with all the symbols up
to, and including, KBD.

First pass: The assembler goes through the entire assembly program, line
by line, keeping track of the line number. This number starts at 0 and is
incremented by 1 whenever an A-instruction or a C-instruction is
encountered, but does not change when a comment or a label declaration is
encountered. Each time a label declaration (xxx) is encountered, the
assembler adds a new entry to the symbol table, associating the symbol xxx



with the current line number plus 1 (this will be the ROM address of the
next instruction in the program).

This pass results in adding to the symbol table all the program’s label
symbols, along with their corresponding values. In figure 6.1, the first pass
results in adding the symbols LOOP and STOP to the symbol table. No code
is generated during the first pass.

Second pass: The assembler goes again through the entire program and
parses each line as follows. Each time an A-instruction with a symbolic
reference is encountered, namely, @xxx, where xxx is a symbol and not a
number, the assembler looks up xxx in the symbol table. If the symbol is
found, the assembler replaces it with its numeric value and completes the
instruction’s translation. If the symbol is not found, then it must represent a
new variable. To handle it, the assembler (i) adds the entry <xxx, value> to
the symbol table, where value is the next available address in the RAM
space designated for variables, and (ii) completes the instruction’s
translation, using this address. In the Hack platform, the RAM space
designated for storing variables starts at 16 and is incremented by 1 after
each time a new variable is found in the code. In figure 6.1, the second pass
results in adding the symbols i and sum to the symbol table.

6.4    Implementation

Usage: The Hack assembler accepts a single command-line argument, as
follows,

prompt> HackAssembler Prog.asm

where the input file Prog.asm contains assembly instructions (the .asm
extension is mandatory). The file name may contain a file path. If no path is
specified, the assembler operates on the current folder. The assembler
creates an output file named Prog.hack and writes the translated binary
instructions into it. The output file is created in the same folder as the input
file. If there is a file by this name in the folder, it will be overwritten.



We propose dividing the assembler implementation into two stages. In
the first stage, develop a basic assembler for Hack programs that contain no
symbolic references. In the second stage, extend the basic assembler to
handle symbolic references.

6.4.1    Developing a Basic Assembler

The basic assembler assumes that the source code contains no symbolic
references. Therefore, except for handling comments and white space, the
assembler has to translate either C-instructions or A-instructions of the form
@xxx, where xxx is a decimal value (and not a symbol). This translation task
is straightforward: each mnemonic component (field) of a symbolic C-
instruction is translated into its corresponding bit code, according to figure
6.2, and each decimal constant xxx in a symbolic A-instruction is translated
into its equivalent binary code.

We propose basing the assembler on a software architecture consisting of
a Parser module for parsing the input into instructions and instructions into
fields, a Code module for translating the fields (symbolic mnemonics) into
binary codes, and a Hack assembler program that drives the entire
translation process. Before proceeding to specify the three modules, we
wish to make a note about the style that we use to describe these
specifications.

API documentation: The development of the Hack assembler is the first in
a series of seven software construction projects that follow in part II of the
book. Each one of these projects can be developed independently, using any
high-level programming language. Therefore, our API documentation style
makes no assumptions on the implementation language.

In each project, starting with this one, we propose an API consisting of
several modules. Each module documents one or more routines. In a typical
object-oriented language, a module corresponds to a class, and a routine
corresponds to a method. In other languages, a module may correspond to a
file, and a routine to a function. Whichever language you use for
implementing the software projects, starting with the assembler, there
should be no problem mapping the modules and routines of our proposed
APIs on the programming elements of your implementation language.



The Parser

The Parser encapsulates access to the input assembly code. In particular, it
provides a convenient means for advancing through the source code,
skipping comments and white space, and breaking each symbolic
instruction into its underlying components.

Although the basic version of the assembler is not required to handle
symbolic references, the Parser that we specify below does. In other words,
the Parser specified here serves both the basic assembler and the complete
assembler.

The Parser ignores comments and white space in the input stream,
enables accessing the input one line at a time, and parses symbolic
instructions into their underlying components.

The Parser API is listed on the next page. Here are some examples of
how the Parser services can be used. If the current instruction is @17 or
@sum, a call to symbol() would return the string "17" or "sum", respectively. If
the current instruction is (LOOP), a call to symbol() would return the string
"LOOP". If the current instruction is  a call to dest (), comp (), and
jump () would return the strings "D", "  and "JLE", respectively.

In project 6 you have to implement this API using some high-level
programming language. In order to do so, you must be familiar with how
this language handles text files, and strings.



The Code Module

This module provides services for translating symbolic Hack mnemonics
into their binary codes. Specifically, it translates symbolic Hack mnemonics



into their binary codes according to the language specifications (see figure
6.2). Here is the API:

All the n-bit codes are returned as strings of '0' and '1' characters. For
example, a call to dest ("DM") returns the string "011", a call to comp 
returns the string "0110111", a call to comp  returns the string "1110111", a
call to jump ("JNE") returns the string "101", and so on. All these mnemonic-
binary mappings are specified in figure 6.2.

The Hack Assembler

This is the main program that drives the entire assembly process, using the
services of the Parser and Code modules. The basic version of the
assembler (which we describe now) assumes that the source assembly code
contains no symbolic references. This means that (i) in all instructions of
type @xxx, the xxx constants are decimal numbers and not symbols and (ii)
the input file contains no label instructions, that is, no instructions of the
form (xxx).

The basic assembler program can now be described as follows. The
program gets the name of the input source file, say, Prog, from the
command-line argument. It constructs a Parser for parsing the input file
Prog.asm and creates an output file, Prog.hack, into which it will write the
translated binary instructions. The program then enters a loop that iterates
through the lines (assembly instructions) in the input file and processes
them as follows.

For each C-instruction, the program uses the Parser and Code services for
parsing the instruction into its fields and translating each field into its
corresponding binary code. The program then assembles (concatenates) the



translated binary codes into a string consisting of sixteen '0' and '1'
characters and writes this string as the next line in the output .hack file.

For each A-instruction of type @xxx, the program translates xxx into its
binary representation, creates a string of sixteen '0' and '1' characters, and
writes it as the next line in the output .hack file.

We provide no API for this module, inviting you to implement it as you
see fit.

6.4.2    Completing the Assembler

The Symbol Table

Since Hack instructions can contain symbolic references, the assembly
process must resolve them into actual addresses. The assembler deals with
this task using a symbol table, designed to create and maintain the
correspondence between symbols and their meaning (in Hack’s case, RAM
and ROM addresses).

A natural means for representing this <symbol, address> mapping is any
data structure designed to handle <key, value> pairs. Every modern high-
level programming language features such a ready-made abstraction,
typically called a hash table, map, dictionary, among other names. You can
either implement the symbol table from scratch or customize one of these
data structures. Here is the SymbolTable API:

6.5    Project



Objective: Develop an assembler that translates programs written in Hack
assembly language into Hack binary code.

This version of the assembler assumes that the source assembly code is
error-free. Error checking, reporting, and handling can be added to later
versions of the assembler but are not part of project 6.

Resources: The main tool you need for completing this project is the
programming language in which you will implement your assembler. The
assembler and CPU emulator supplied in nand2tetris/tools may also come in
handy. These tools allow experimenting with a working assembler before
setting out to build one yourself. Importantly, the supplied assembler allows
comparing its output to the outputs generated by your assembler. For more
information about these capabilities, refer to the assembler tutorial at www
.nand2tetris.org.

Contract: When given to your assembler as a command line argument, a
Prog.asm file containing a valid Hack assembly language program should be
translated into the correct Hack binary code and stored in a file named
Prog.hack, located in the same folder as the source file (if a file by this name
exists, it is overwritten). The output produced by your assembler must be
identical to the output produced by the supplied assembler.

Development plan: We suggest building and testing the assembler in two
stages. First, write a basic assembler designed to translate programs that
contain no symbolic references. Then extend your assembler with symbol-
handling capabilities.

Test programs: The first test program has no symbolic references. The
remaining test programs come in two versions: Prog.asm and ProgL.asm,
which are with and without symbolic references, respectively.

Add.asm: Adds the constants 2 and 3 and puts the result in R0.

Max.asm: Computes max(R0, R1) and puts the result in R2.

Rect.asm: Draws a rectangle at the top-left corner of the screen. The
rectangle is 16 pixels wide and R0 pixels high. Before running this program,
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put a nonnegative value in R0.

Pong.asm: A classical single-player arcade game. A ball bounces repeatedly
off the screen’s edges. The player attempts to hit the ball with a paddle,
moving the paddle by pressing the left and right arrow keys. For every
successful hit, the player gains a point and the paddle shrinks a little to
make the game harder. If the player misses the ball, the game is over. To
quit the game, press ESC.

The supplied Pong program was developed using tools that will be
presented in part II of the book. In particular, the game software was written
in the high-level Jack programming language and translated into the given
Pong.asm file by the Jack compiler. Although the high-level Pong.jack
program is only about three hundred lines of code, the executable Pong
application is about twenty thousand lines of binary code, most of which is
the Jack operating system. Running this interactive program in the supplied
CPU emulator is a slow affair, so don’t expect a high-powered Pong game.
This slowness is actually a virtue, since it enables tracking the graphical
behavior of the program. As you develop the software hierarchy in part II,
this game will run much faster.

Testing: Let Prog.asm be an assembly Hack program, for example, one of
the given test programs. There are essentially two ways to test whether your
assembler translates Prog.asm correctly. First, you can load the Prog.hack
file generated by your assembler into the supplied CPU emulator, execute it,
and check that it’s doing what it’s supposed to be doing.

The second testing technique is to compare the code generated by your
assembler to the code generated by the supplied assembler. To begin with,
rename the file generated by your assembler to Prog1.hack. Next, load
Prog.asm into the supplied assembler, and translate it. If your assembler is
working correctly, it follows that Prog1.hack must be identical to the
Prog.hack file produced by the supplied assembler. This comparison can be
done by loading Prog1.asm as a compare file—see figure 6.3 for the details.



Figure 6.3    Testing the assembler’s output using the supplied assembler.

A web-based version of project 6 is available at www.nand2tetris.org.

6.6    Perspective

Like most assemblers, the Hack assembler is a relatively simple translator,
dealing mainly with text processing. Naturally, assemblers for richer
machine languages are more elaborate. Also, some assemblers feature more
sophisticated symbol-handling capabilities not found in Hack. For example,
some assemblers support constant arithmetic on symbols, like using
to refer to the fifth memory location after the address referred to by base.

Many assemblers are extended to handle macro-instructions. A macro-
instruction is a sequence of machine instructions that has a name. For
example, our assembler can be extended to translate agreed-upon macro-
instructions, for example, [addr], into the two primitive Hack
instructions @addr, followed by . Likewise, the macro-instruction goto
addr can be translated into @addr, followed by 0;JMP, and so on. Such
macro-instructions can considerably simplify the writing of assembly
programs, at a low translation cost.
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It should be noted that machine language programs are rarely written by
humans. Rather, they are typically written by compilers. And a compiler—
being an automaton—can optionally bypass the symbolic instructions and
generate binary machine code directly. That said, an assembler is still a
useful program, especially for developers of C/C++ programs who are
concerned about efficiency and optimization. By inspecting the symbolic
code generated by the compiler, the programmer can improve the high-level
code to achieve better performance on the host hardware. When the
generated assembly code is considered efficient, it can be translated further
by the assembler into the final binary, executable code.

Congratulations! You’ve reached the end of part I of the Nand to Tetris
journey. If you completed projects 1–6, you have built a general-purpose
computer system from first principles. This is a fantastic achievement, and
you should feel proud and accomplished.

Alas, the computer is capable of executing only programs written in
machine language. In part II of the book we will use this barebone hardware
platform as a point of departure and build on top of it a modern software
hierarchy. The software will consist of a virtual machine, a compiler for a
high-level, object-based programming language, and a basic operating
system.

So, whenever you’re ready for more adventures, let’s move on to part II
of our grand journey from Nand to Tetris.



 

II       Software

Any sufficiently advanced technology is indistinguishable from magic.
—Arthur C. Clarke (1962)

To which we add: “and any sufficiently advanced magic is indistinguishable
from hard work, behind the scenes.” In part I of the book we built the
hardware platform of a computer system named Hack, capable of running
programs written in the Hack machine language. In part II we will
transform this barebone machine into an advanced technology,
indistinguishable from magic: a black box that can metamorphose into a
chess player, a search engine, a flight simulator, a media streamer, or
anything else that tickles your fancy. In order to do so, we’ll unfold the
elaborate behind-the-scenes software hierarchy that endows computers with
the ability to execute programs written in high-level programming
languages. In particular, we’ll focus on Jack, a simple, Java-like, object-
based programming language, described formally in chapter 9. Over the
years, Nand to Tetris readers and students have used Jack to develop Tetris,
Pong, Snake, Space Invaders, and numerous other games and interactive
apps. Being a general-purpose computer, Hack can execute all these
programs, and any other program that comes to your mind.

Clearly, the gap between the expressive syntax of high-level
programming languages, on the one hand, and the clunky instructions of
low-level machine language, on the other, is huge. If you are not convinced,
try developing a Tetris game using instructions like @17 and .
Bridging this gap is what part II of this book is all about. We will build this
bridge by developing gradually some of the most powerful and ambitious



programs in applied computer science: a compiler, a virtual machine, and a
basic operating system.

Our Jack compiler will be designed to take a Jack program, say Tetris,
and produce from it a stream of machine language instructions that, when
executed, makes the Hack platform deliver a Tetris game experience. Of
course Tetris is just one example: the compiler that you build will be
capable of translating any given Jack program into machine code that can
be executed on the Hack computer. The compiler, whose main tasks consist
of syntax analysis and code generation, will be built in chapters 10 and 11.

As with programming languages like Java and C#, the Jack compiler will
be two-tiered: the compiler will generate interim VM code, designed to run
on an abstract virtual machine. The VM code will then be compiled further
by a separate translator into the Hack machine language. Virtualization—
one of the most important ideas in applied computer science—comes into
play in numerous settings including program compilation, cloud computing,
distributed storage, distributed processing, and operating systems. We will
devote chapters 7 and 8 to motivating, designing, and building our virtual
machine.

Like many other high-level languages, the basic Jack language is
surprisingly simple. What turns modern languages into powerful
programming systems are standard libraries providing mathematical
functions, string processing, memory management, graphics drawing, user
interaction handling, and more. Taken together, these standard libraries
form a basic operating system (OS) which, in the Jack framework, is
packaged as Jack’s standard class library. This basic OS, designed to
bridge many gaps between the high-level Jack language and the low-level
Hack platform, will be developed in Jack itself. You may be wondering how
software that is supposed to enable a programming language can be
developed in this very same language. We’ll deal with this challenge by
following a development strategy known as bootstrapping, similar to how
the Unix OS was developed using the C language.

The construction of the OS will give us an opportunity to present elegant
algorithms and classical data structures that are typically used to manage
hardware resources and peripheral devices. We will then implement these
algorithms in Jack, extending the language’s capabilities one step at a time.
As you go through the chapters of part II, you will deal with the OS from



several different perspectives. In chapter 9, acting as an application
programmer, you will develop a Jack app and use the OS services
abstractly, from a high-level client perspective. In chapters 10 and 11, when
building the Jack compiler, you will use the OS services as a low-level
client, for example, for various memory management services required by
the compiler. In chapter 12 you will finally don the hat of the OS developer
and implement all these system services yourself.

II.1    A Taste of Jack Programming

Before delving into all these exciting projects, we’ll give a brief and
informal introduction of the Jack language. This will be done using two
examples, starting with Hello World. We will use this example to
demonstrate that even the most trivial high-level program has much more to
it than meets the eye. We will then present a simple program that illustrates
the object-based capabilities of the Jack language. Once we get a
programmer-oriented taste of the high-level Jack language, we will be
prepared to start the journey of realizing the language by building a virtual
machine, a compiler, and an operating system.

Hello World, again: We began this book with the iconic Hello World program
that learners often encounter as the first thing in introductory programming
courses. Here is this trivial program once again, written in the Jack
programming language:

// First example in Programming 101 class Main {
function void main () {
do Output.printString ("Hello World"); return;
}

}

Let’s discuss some of the implicit assumptions that we normally make when
presented with such programs. The first magic that we take for granted is
that a sequence characters, say, printString ("Hello World"), can cause the
computer to actually display something on the screen. How does the
computer figure out what to do? And even if the computer knew what to do,



how will it actually do it? As we saw in part I of the book, the screen is a
grid of pixels. If we want to display H on the screen, we have to turn on and
off a carefully selected subset of pixels that, taken together, render the
desired letter’s image on the screen. Of course this is just the beginning.
What about displaying this H legibly on screens that have different sizes and
resolutions? And what about dealing with while and for loops, arrays,
objects, methods, classes, and all the other goodies that high-level
programmers are trained to use without ever thinking about how they work?

Indeed, the beauty of high-level programming languages, and that of
well-designed abstractions in general, is that they permit using them in a
state of blissful ignorance. Application programmers are in fact encouraged
to view the language as a black box abstraction, without paying any
attention to how it is actually implemented. All you need is a good tutorial,
a few code examples, and off you go.

Clearly though, at one point or another, someone must implement this
language abstraction. Someone must develop, once and for all, the ability to
efficiently compute square roots when the application programmer
blissfully says sqrt(1764), to elicit a number from the user when the
programmer happily says  to find and carve out an available
memory block when the programmer nonchalantly creates an object using
new, and to perform transparently all the other abstract services that
programmers expect to get without ever thinking about them. So, who are
the good souls who turn high-level programming into an advanced
technology indistinguishable from magic? They are the software wizards
who develop compilers, virtual machines, and operating systems. And
that’s precisely what you will do in the forthcoming chapters.

You may be wondering why you have to bother about this elusive
behind-the-scenes scene. Didn’t we just say that you can use high-level
languages without worrying about how they work? There are at least two
reasons why. First, the more you delve into low-level system internals, the
more sophisticated high-level programmer you become. In particular, you
learn how to write high-level code that exploits the hardware and the OS
cleverly and efficiently and how to avoid baffling bugs like memory leaks.

Second, by getting your hands dirty and developing the system internals
yourself, you will discover some of the most beautiful and powerful
algorithms and data structures in applied computer science. Importantly, the



ideas and techniques that will unfold in part II are not limited to compilers
and operating systems. Rather, they are the building blocks of numerous
software systems and applications that will accompany you throughout your
career.

The PointDemo program: Suppose we want to represent and manipulate
points on a plane. Figure II.1 shows two such points, p1 and p2, and a third
point, p3, resulting from the vector addition 
The figure also depicts the Euclidean distance between p1 and p3, which
can be computed using the Pythagorean theorem. The code in the Main class
illustrates how such algebraic manipulations can be done using the object-
based Jack language.

Figure II.1    Manipulating points on a plane: example and Jack code.

You may wonder why Jack uses keywords like var, let, and do. For now,
we advise you not to dwell on syntactic details. Instead, let’s focus on the
big picture and proceed to review how the Jack language can be used to
implement the Point abstract data type (figure II.2).



Figure II.2    Jack implementation of the Point abstraction.

The code shown in figure II.2 illustrates that a Jack class (of which Main
and Point are two examples) is a collection of one or more subroutines, each
being a constructor, method, or function. Constructors are subroutines that
create new objects, methods are subroutines that operate on the current
object, and functions are subroutines that operate on no particular object.
(Object-oriented design purists may frown about mixing methods and
functions in the same class; we are doing it here for illustrative purposes).

The remainder of this section is an informal overview of the Main and the
Point classes. Our goal is to give a taste of Jack programming, deferring a
complete language description to chapter 9. So, allowing ourselves the
luxury of focusing on essence only, let’s get started. The Main.main function
begins by declaring three object variables (also known as references, or
pointers), designed to refer to instances of the Point class. It then goes on to
construct two Point objects, and assigns the p1 and p2 variables to them.
Next, it calls the plus method, and assigns p3 to the Point object returned by
that method. The rest of the Main.main function prints some results.

The Point class begins by declaring that every Point object is characterized
by two field variables (also known as properties, or instance variables). It
then declares a static variable, that is, a class-level variable associated with
no particular object. The class constructor sets up the field values of the



newly created object and increments the number of instances derived from
this class so far. Note that a Jack constructor must explicitly return the
memory address of the newly created object, which, according to the
language rules, is denoted this.

You may wonder why the result of the square root computed by the
distance method is stored in an int variable—clearly a real-valued data type
like float would make more sense. The reason for this peculiarity is simple:
the Jack language features only three primitive data types: int, boolean, and
char. Other data types can be implemented at will using classes, as we’ll do
in chapters 9 and 12.

The operating system: The Main and Point classes use three OS functions:
Output.printInt, Output.printString, and Math.sqrt. Like other modern high-level
languages, the Jack language is augmented by a set of standard classes that
provide commonly used OS services (the complete OS API is given in
appendix 6). We will have much more to say about the OS services in
chapter 9, where we’ll use them in the context of Jack programming, as
well as in chapter 12, where we’ll build the OS.

In addition to calling OS services for their effects directly from Jack
programs, the OS comes to play in other, less obvious ways. For example,
consider the new operation, used to construct objects in object-oriented
languages. How does the compiler know where in the host RAM to put the
newly constructed object? Well, it doesn’t. An OS routine is called to figure
it out. When we build the OS in chapter 12, you will implement, among
many other things, a typical run-time memory management system. You
will then learn, hands-on, how this system interacts with the hardware, from
the one end, and with compilers, from the other, in order to allocate and
reclaim RAM space cleverly and efficiently. This is just one example that
illustrates how the OS bridges gaps between high-level applications and the
host hardware platform.

II.2    Program Compilation

A high-level program is a symbolic abstraction that means nothing to the
underlying hardware. Before executing a program, the high-level code must



be translated into machine language. This translation process is called
compilation, and the program that carries it out is called a compiler. Writing
a compiler that translates high-level programs into low-level machine
instructions is a worthy challenge. Some languages, for example, Java and
C#, deal with this challenge by employing an elegant two-tier compilation
model. First, the source program is translated into an interim, abstract VM
code (called bytecode in Java and Python and Intermediate Language in
C#/.NET). Next, using a completely separate and independent process, the
VM code can be translated further into the machine language of any target
hardware platform.

This modularity is at least one reason why Java became such a dominant
programming language. Taking a historical perspective, Java can be viewed
as a powerful object-oriented language whose two-tier compilation model
was the right thing in the right time, just when computers began evolving
from a few predictable processor/OS platforms into a bewildering
hodgepodge of numerous PCs, cell phones, mobile devices, and Internet of
Things devices, all connected by a global network. Writing high-level
programs that can execute on any one of these host platforms is a daunting
challenge. One way to streamline this distributed, multi-vendor ecosystem
(from a compilation perspective) is to base it on some overarching, agreed-
upon virtual machine architecture. Acting as a common, intermediate run-
time environment, the VM approach allows developers to write high-level
programs that run almost as is on many different hardware platforms, each
equipped with its own VM implementation. We will have much more to say
about the enabling power of this modularity as part II unfolds.

The road ahead: In the remainder of the book we’ll apply ourselves to
developing all the exciting software technologies mentioned above. Our
ultimate goal is creating an infrastructure for turning high-level programs—
any program—into executable code. The road map is shown in figure II.3.



Figure II.3    Road map of part II (the assembler belongs to part I and is shown here for
completeness). The road map describes a translation hierarchy, from a high-level, object-based,
multi-class program to VM code, to assembly code, to executable binary code. The numbered circles
stand for the projects that implement the compiler, the VM translator, the assembler, and the
operating system. Project 9 focuses on writing a Jack application in order to get acquainted with the
language.

Following the Nand to Tetris spirit, we’ll pursue the part II road map
from the bottom up. To get started, we assume that we have a hardware
platform equipped with an assembly language. In chapters 7–8 we’ll present
a virtual machine architecture and a VM language, and we’ll implement this
abstraction by developing a VM translator that translates VM programs into
Hack assembly programs. In chapter 9 we’ll present the Jack high-level
language and use it to develop a simple computer game. This way, you’ll
get acquainted with the Jack language and operating system before setting
out to build them. In chapters 10–11 we’ll develop the Jack compiler, and in
chapter 12 we’ll build the operating system.

So, let’s roll up our sleeves and get to work!



 

7       Virtual Machine I: Processing

Programmers are creators of universes for which they alone are responsible. Universes of virtually
unlimited complexity can be created in the form of computer programs.

—Joseph Weizenbaum, Computer Power and Human Reason (1974)

This chapter describes the first steps toward building a compiler for a
typical object-based, high-level language. We approach this challenge in
two major stages, each spanning two chapters. In chapters 10–11 we’ll
describe the construction of a compiler, designed to translate high-level
programs into intermediate code; in chapters 7–8 we describe the
construction of a follow-up translator, designed to translate the
intermediate code into the machine language of a target hardware platform.
As the chapter numbers suggest, we will pursue this substantial
development from the bottom up, starting with the translator.

The intermediate code that lies at the core of this compilation model is
designed to run on an abstract computer, called a virtual machine, or VM.
There are several reasons why this two-tier compilation model makes sense,
compared to traditional compilers that translate high-level programs
directly to machine language. One benefit is cross-platform compatibility:
since the virtual machine may be realized with relative ease on many
hardware platforms, the same VM code can run as is on any device
equipped with such a VM implementation. That’s one reason Java became a
dominant language for developing apps for mobile devices, which are
characterized by many different processor/OS combinations. The VM can
be implemented on the target devices by using software interpreters, or
special-purpose hardware, or by translating the VM programs into the
device’s machine language. The latter implementation approach is taken by



Java, Scala, C#, and Python, as well as by the Jack language developed in
Nand to Tetris.

This chapter presents a typical VM architecture and VM language,
conceptually similar to the Java Virtual Machine (JVM) and bytecode,
respectively. As usual in Nand to Tetris, the virtual machine will be
presented from two perspectives. First, we will motivate and specify the
VM abstraction, describing what the VM is designed to do. Next, we will
describe a proposed implementation of the VM over the Hack platform. Our
implementation entails writing a program called a VM translator that
translates VM code into Hack assembly code.

The VM language that we’ll present consists of arithmetic-logical
commands, memory access commands called push and pop, branching
commands, and function call-and-return commands. We split the discussion
and implementation of this language into two parts, each covered in a
separate chapter and project. In this chapter we build a basic VM translator
which implements the VM’s arithmetic-logical and push/pop commands. In
the next chapter we extend the basic translator to handle branching and
function commands. The result will be a full-scale virtual machine
implementation that will serve as the back end of the compiler that we will
build in chapters 10–11.

The virtual machine that will emerge from this effort illustrates several
important ideas and techniques. First, the notion of having one computing
framework emulate another is a fundamental idea in computer science,
tracing back to Alan Turing in the 1930s. Today, the virtual machine model
is the centerpiece of several mainstream programming environments,
including Java, .NET, and Python. The best way to gain an intimate inside
view of how these programming environments work is to build a simple
version of their VM cores, as we do here.

Another important theme in this chapter is stack processing. The stack is
a fundamental and elegant data structure that comes to play in numerous
computer systems, algorithms, and applications. Since the VM presented in
this chapter is stack-based, it provides a working example of this
remarkably versatile and powerful data structure.



7.1    The Virtual Machine Paradigm

Before a high-level program can run on a target computer, it must be
translated into the computer’s machine language. Traditionally, a separate
compiler was developed specifically for any given pair of high-level
language and low-level machine language. Over the years, the reality of
many high-level languages, on the one hand, and many processors and
instruction sets, on the other, has led to a proliferation of many different
compilers, each depending on every detail of both its source and target
languages. One way to decouple this dependency is to break the overall
compilation process into two nearly separate stages. In the first stage, the
high-level code is parsed and translated into intermediate and abstract
processing steps—steps that are neither high nor low. In the second stage,
the intermediate steps are translated further into the low-level machine
language of the target hardware.

This decomposition is very appealing from a software engineering
perspective. First, note that the first translation stage depends only on the
specifics of the source high-level language, and the second stage only on
the specifics of the target low-level machine language. Of course, the
interface between the two translation stages—the exact definition of the
intermediate processing steps—must be carefully designed and optimized.
At some point in the evolution of program translation solutions, compiler
developers concluded that this intermediate interface is sufficiently
important to merit its own definition as a standalone language designed to
run on an abstract machine. Specifically, one can describe a virtual machine
whose commands realize the intermediate processing steps into which high-
level commands are translated. The compiler that was formerly a single
monolithic program is now split into two separate and much simpler
programs. The first program, still termed compiler, translates the high-level
code into intermediate VM commands; the second program, called VM
translator, translates the VM commands further into the machine
instructions of the target hardware platform. Figure 7.1 outlines how this
two-tiered compilation framework has contributed to the cross-platform
portability of Java programs.



Figure 7.1    The virtual machine framework, using Java as an example. High-level programs are
compiled into intermediate VM code. The same VM code can be shipped to, and executed on, any
hardware platform equipped with a suitable JVM implementation. These VM implementations are
typically realized as client-side programs that translate the VM code into the machine languages of
the target devices.

The virtual machine framework entails many practical benefits. When a
vendor introduces to the market a new digital device—say, a cell phone—it
can develop for it a JVM implementation, known as JRE (Java Runtime
Environment), with relative ease. This client-side enabling infrastrucutre
immediately endows the device with a huge base of available Java software.
And, in a world like .NET, in which several high-level languages are made
to compile into the same intermediate VM language, compilers for different
languages can share the same VM back end, allowing usage of common
software libraries and language interoperability.

The price paid for the elegance and power of the VM framework is
reduced efficiency. Naturally, a two-tier translation process results,
ultimately, in generating machine code that is more verbose and



cumbersome than the code produced by direct compilation. However, as
processors become faster and VM implementations more optimized, the
degraded efficiency is hardly noticeable in most applications. Of course,
there will always be high-performance applications and embedded systems
that will continue to demand the efficient code generated by single-tier
compilers of language like C and C++. That said, modern versions of C++
feature both classical one-tier compilers and two-tier VM-based compilers.

7.2    Stack Machine

The design of an effective VM language seeks to strike a convenient
balance between high-level programming languages, on the one hand, and a
great variety of low-level machine languages, on the other. Thus, the
desired VM language should satisfy several requirements coming both from
above and from below. First, the language should have a reasonable
expressive power. We achieve this by designing a VM language that
features arithmetic-logical commands, push/pop commands, branching
commands, and function commands. These VM commands should be
sufficiently “high” so that the VM code generated by the compiler will be
reasonably elegant and well structured. At the same time, the VM
commands should be sufficiently “low” so that the machine code generated
from them by VM translators will be tight and efficient. Said otherwise, we
have to make sure that the translation gaps between the high-level and the
VM level, on the one hand, and the VM level and the machine level, on the
other, will not be wide. One way to satisfy these somewhat conflicting
requirements is to base the interim VM language on an abstract architecture
called a stack machine.

Before going on, we’d like to issue a plea for patience. The relationship
between the stack machine that we now turn to describe and the compiler
that we’ll introduce later in the book is subtle. Therefore, we advise readers
to allow themselves to savor the intrinsic beauty of the stack machine
abstraction without worrying about its ultimate purpose in every step of the
way. The full practical power of this remarkable abstraction will carry its
weight only toward the end of the next chapter; for now, suffice it to say



that any program, written in any high-level programming language, can be
translated into a sequence of operations on a stack.

7.2.1    Push and Pop

The centerpiece of the stack machine model is an abstract data structure
called a stack. A stack is a sequential storage space that grows and shrinks
as needed. The stack supports various operations, the two key ones being
push and pop. The push operation adds a value to the top of the stack, like
adding a plate to the top of a stack of plates. The pop operation removes the
stack’s top value; the value that was just before it becomes the top stack
element. See figure 7.2 for an example. Note that the push/pop logic results
in a last-in-first-out (LIFO) access logic: the popped value is always the last
one that was pushed onto the stack. As it turns out, this access logic lends
itself perfectly to program translation and execution purposes, but this
insight will take two chapters to unfold.

Figure 7.2    Stack processing example, illustrating the two elementary operations push and pop.
The setting consists of two data structures: a RAM-like memory segment and a stack. Following
convention, the stack is drawn as if it grows downward. The location just following the stack’s top
value is referred to by a pointer called sp, or stack pointer. The x and y symbols refer to two arbitrary
memory locations.



As figure 7.2 shows, our VM abstraction includes a stack, as well as a
sequential, RAM-like memory segment. Observe that stack access is
different from conventional memory access. First, the stack is accessible
only from its top, whereas regular memory allows direct and indexed access
to any value in the memory. Second, reading a value from the stack is a
lossy operation: only the top value can be read, and the only way to access
it entails removing it from the stack (although some stack models also
provide a peek operation, which allows reading without removing). In
contrast, the act of reading a value from a regular memory leaves no impact
on the memory’s state. Lastly, writing to the stack entails adding a value
onto the stack’s top without changing the other values in the stack. In
contrast, writing an item into a regular memory location is a lossy
operation, since it overrides the location’s previous value.

7.2.2    Stack Arithmetic

Consider the generic operation x op y, where the operator op is applied to
the operands x and y, for example,  and so on. In a stack machine,
each x op y operation is carried out as follows: first, the operands x and y
are popped off the top of the stack; next, the value of x op y is computed;
finally, the computed value is pushed onto the top of the stack. Likewise,
the unary operation op x is realized by popping x off the top of the stack,
computing the value of op x, and finally pushing this value onto the top of
the stack. For example, here is how addition and negation are handled:

Stack-based evaluation of general arithmetic expressions is an extension of
the same idea. For example, consider the expression  taken
from some high-level program. The stack-based evaluation of this



expression is shown in figure 7.3a. Stack-based evaluation of logical
expressions, shown in figure 7.3b, follows the same scheme.

Figure 7.3a    Stack-based evaluation of arithmetic expressions.



Figure 7.3b    Stack-based evaluation of logical expressions.

Note that from the stack’s perspective, each arithmetic or logical
operation has the net impact of replacing the operation’s operands with the
operation’s result, without affecting the rest of the stack. This is similar to
how humans perform mental arithmetic, using our short-term memory. For
example, how to compute the value of  We start by mentally
popping 11 and 7 off the expression and calculating . We then plug the
resulting value back into the expression, yielding  The net effect is
that has been replaced by 18, and the rest of the expression remains
the same as before. We can now proceed to perform similar pop-compute-
and-push mental operations until the expression is reduced to a single value.

These examples illustrate an important virtue of stack machines: any
arithmetic and logical expression—no matter how complex—can be
systematically converted into, and evaluated by, a sequence of simple
operations on a stack. Therefore, one can write a compiler that translates
high-level arithmetic and logical expressions into sequences of stack
commands, as indeed we’ll do in chapters 10–11. Once the high-level
expressions have been reduced into stack commands, we can proceed to
evaluate them using a stack machine implementation.



7.2.3    Virtual Memory Segments

So far in our stack processing examples, the push/pop commands were
illustrated conceptually, using the syntax push x and pop y, where x and y
referred abstractly to arbitrary memory locations. We now turn to give a
formal description of our push and pop commands.

High-level languages feature symbolic variables like x, y, sum, count, and
so on. If the language is object-based, each such variable can be a class-
level static variable, an instance-level field of an object, or a method-level
local or argument variable. In virtual machines like Java’s JVM and in our
own VM model, there are no symbolic variables. Instead, variables are
represented as entries in virtual memory segments that have names like
static, this, local, and argument. In particular, as we’ll see in later chapters, the
compiler maps the first, second, third, … static variable found in the high-
level program onto static 0, static 1, static 2, and so on. The other variable
kinds are mapped similarly on the segments this, local, and argument. For
example, if the local variable x and the field y have been mapped on local 1
and this 3, respectively, then a high-level statement like let  will be
translated by the compiler into push this 3 followed by pop local 1. Altogether,
our VM model features eight memory segments, whose names and roles are
listed in figure 7.4.

Figure 7.4    Virtual memory segments.



We note in passing that developers of VM implementations need not care
about how the compiler maps symbolic variables on the virtual memory
segments. We will deal with these issues at length when we develop the
compiler in chapters 10–11. For now, we observe that VM commands
access all the virtual memory segments in exactly the same way: by using
the segment name followed by a nonnegative index.



7.3    VM Specification, Part I

Our VM model is stack-based: all the VM operations take their operands
from, and store their results on, the stack. There is only one data type: a
signed 16-bit integer. A VM program is a sequence of VM commands that
fall into four categories:

Push / pop commands transfer data between the stack and memory
segments.
Arithmetic-logical commands perform arithmetic and logical operations.
Branching commands facilitate conditional and unconditional branching
operations.
Function commands facilitate function call-and-return operations.

The specification and implementation of these commands span two
chapters. In this chapter we focus on the arithmetic-logical and push/pop
commands. In the next chapter we complete the specification of the
remaining commands.

Comments and white space: Lines beginning with // are considered
comments and are ignored. Blank lines are permitted and are ignored.

Push / Pop Commands

Arithmetic-Logical Commands

Arithmetic commands: add, sub, neg

Comparison commands: eq, gt, lt
Logical commands: and, or, not



The commands add, sub, eq, gt, lt, and, and or have two implicit operands. To
execute each one of them, the VM implementation pops two values off the
stack’s top, computes the stated function on them, and pushes the resulting
value back onto the stack (by implicit operand we mean that the operand is
not part of the command syntax: since the command is designed to always
operate on the two top stack values, there is no need to specify them). The
remaining neg and not commands have one implicit operand and work the
same way. Figure 7.5 gives the details.

Figure 7.5    The arithmetic-logical commands of the VM language.

7.4    Implementation

The virtual machine described up to this point is an abstraction. If we want
to use this VM for real, it must be implemented on some real, host platform.
There are several implementation options, of which we’ll describe one: a
VM translator. The VM translator is a program that translates VM
commands into machine language instructions. Writing such a program
entails two main tasks. First, we have to decide how to represent the stack
and the virtual memory segments on the target platform. Second, we have to
translate each VM command into a sequence of low-level instructions that
can execute on the target platform.



For example, suppose that the target platform is a typical von Neumann
machine. In this case, we can represent the VM’s stack using a designated
memory block in the host RAM. The lower end of this RAM block will be a
fixed base address, and its higher end will change as the stack grows and
shrinks. Thus, given a fixed stackBase address, we can manage the stack by
keeping track of a single variable: a stack pointer, or SP, which holds the
address of the RAM entry just following the stack’s topmost value. To
initialize the stack, we set SP to stackBase. From this point onward, each push
x command can be implemented by the pseudocode operations 
followed by SP++, and each pop x command can be implemented by SP——
followed by .

Let us assume that the host platform is the Hack computer and that we
decide to anchor the stack base at address 256 in the Hack RAM. In that
case, the VM translator can start by generating assembly code that realizes 

, that is, @256, , @SP, . From this point onward, the VM
translator can handle each push x and pop x command by generating
assembly code that realizes the operations  and ,
respectively.

With that in mind, let us now consider the implementation of the VM
arithmetic-logical commands add, sub, neg, and so on. Conveniently, all
these commands share exactly the same access logic: popping the
command’s operands off the stack, carrying out a simple calculation, and
pushing the result onto the stack. This means that once we figure out how to
implement the VM’s push and pop commands, the implementation of the
VM’s arithmetic-logical commands will follow straightforwardly.

7.4.1    Standard VM Mapping on the Hack Platform, Part I

So far in this chapter, we have made no assumption whatsoever about the
target platform on which our virtual machine will be implemented:
everything was described abstractly. When it comes to virtual machines,
this platform independence is the whole point: you don’t want to commit
your abstract machine to any particular hardware platform, precisely
because you want it to potentially run on any platform, including those that
were not yet built or invented.



Of course, at some point we have to implement the VM abstraction on a
particular hardware platform (for example, on one of the target platforms
mentioned in figure 7.1). How should we go about it? In principle, we can
do whatever we please, as long as we end up realizing the VM abstraction
faithfully and efficiently. Nevertheless, VM architects normally publish
basic implementation guidelines, known as standard mappings, for different
hardware platforms. With that in mind, the remainder of this section
specifies the standard mapping of our VM abstraction on the Hack
computer. In what follows, we use the terms VM implementation and VM
translator interchangeably.

VM program: The complete definition of a VM program will be presented
in the next chapter. For now, we view a VM program as a sequence of VM
commands stored in a text file named FileName.vm (the first character of the
file name must be an uppercase letter, and the extension must be vm). The
VM translator should read each line in the file, treat it as a VM command,
and translate it into one or more instructions written in the Hack language.
The resulting output—a sequence of Hack assembly instructions—should
be stored in a text file named FileName.asm (the file name is identical to
that of the source file; the extension must be asm). When translated by the
Hack assembler into binary code or run as is on a Hack CPU emulator, this
.asm file should perform the semantics mandated by the source VM
program.

Data type: The VM abstraction has only one data type: a signed integer.
This type is implemented on the Hack platform as a two’s complement 16-
bit value. The VM Boolean values true and false are represented as  and 0,
respectively.

RAM usage: The host Hack RAM consists of 32K 16-bit words. VM
implementations should use the top of this address space as follows:



Recall that according to the Hack machine language specification (chapter
6), RAM addresses 0 to 4 can be referred to using the symbols SP, LCL, ARG,
THIS, and THAT. This convention was introduced into the assembly language
with foresight, to help developers of VM implementations write readable
code. The expected use of these addresses in the VM implementation is as
follows:

When we say base address of a segment, we mean a physical address in the
host RAM. For example, if we wish to map the local segment on the
physical RAM segment starting at address 1017, we can write Hack code
that sets LCL to 1017. We note in passing that deciding where to locate
virtual memory segments in the host RAM is a delicate issue. For example,
each time a function starts executing, we have to allocate RAM space to
hold its local and argument memory segments. And when the function calls
another function, we have to put these segments on hold and allocate
additional RAM space for representing the segments of the called function,
and so on and so forth. How can we ensure that these open-ended memory
segments will not overflow into each other and into other reserved RAM
areas? These memory management challenges will be addressed in the next
chapter, when we’ll implement the VM language’s function-call-and-return
commands.



For now though, none of these memory allocation issues should bother
us. Instead, you are to assume that SP, ARG, LCL, THIS, and THAT have been
already initialized to some sensible addresses in the host RAM. Note that
VM implementations never see these addresses anyway. Rather, they
manipulate them symbolically, using the pointer names. For example,
suppose we want to push the value of the D register onto the stack. This
operation can be implemented using the logic  which can be
expressed in Hack assembly as @SP,  @SP,  This code will
execute the push operation perfectly, while knowing neither where the stack
is located in the host RAM nor what is the current value of the stack
pointer.

We suggest taking a few minutes to digest the assembly code just shown.
If you don’t understand it, you must refresh your knowledge of pointer
manipulation in the Hack assembly language (section 4.3, example 3). This
knowledge is a prerequisite for developing the VM translator, since the
translation of each VM command entails generating code in the Hack
assembly language.

Memory Segments Mapping

Local, argument, this, that: In the next chapter we discuss how the VM
implementation maps these segments dynamically on the host RAM. For
now, all we have to know is that the base addresses of these segments are
stored in the registers LCL, ARG, THIS, and THAT, respectively. Therefore, any
access to the i-th entry of a virtual segment (in the context of a VM “push /
pop segmentName i” command) should be translated into assembly code that
accesses address  in the RAM, where base is one of the pointers LCL,
ARG, THIS, or THAT.

Pointer: Unlike the virtual segments described above, the pointer segment
contains exactly two values and is mapped directly onto RAM locations 3
and 4. Recall that these RAM locations are also called, respectively, THIS
and THAT. Thus, the semantics of the pointer segment is as follows. Any
access to pointer 0 should result in accessing the THIS pointer, and any access
to pointer 1 should result in accessing the THAT pointer. For example, pop
pointer 0 should set THIS to the popped value, and push pointer 1 should push



onto the stack the current value of THAT. These peculiar semantics will make
perfect sense when we write the compiler in chapters 10–11, so stay tuned.

Temp: This 8-word segment is also fixed and mapped directly on RAM
locations 5 – 12. With that in mind, any access to temp i, where i varies from
0 to 7, should be translated into assembly code that accesses RAM location 

Constant: This virtual memory segment is truly virtual, as it does not
occupy any physical RAM space. Instead, the VM implementation handles
any access to constant i by simply supplying the constant i. For example, the
command push constant 17 should be translated into assembly code that
pushes the value 17 onto the stack.

Static: Static variables are mapped on addresses 16 to 255 of the host
RAM. The VM translator can realize this mapping automatically, as
follows. Each reference to static i in a VM program stored in file Foo.vm can
be translated to the assembly symbol Foo.i. According to the Hack machine
language specification (chapter 6), the Hack assembler will map these
symbolic variables on the host RAM, starting at address 16. This
convention will cause the static variables that appear in a VM program to be
mapped on addresses 16 and onward, in the order in which they appear in
the VM code. For example, suppose that a VM program starts with the code
push constant 100, push constant 200, pop static 5, pop static 2. The translation
scheme described above will cause static 5 and static 2 to be mapped on RAM
addresses 16 and 17, respectively.

This implementation of static variables is somewhat devious, but works
well. It causes the static variables of different VM files to coexist without
intermingling, since their generated FileName.i symbols have unique prefix
file names. We note in closing that since the stack begins at address 256, the
implementation limits the number of static variables in a Jack program to 

Assembly language symbols: Let us summarize all the special symbols
mentioned above. Suppose that the VM program that we have to translate is
stored in a file named Foo.vm. VM translators conforming to the standard



VM mapping on the Hack platform generate assembly code that uses the
following symbols: SP, LCL, ARG, THIS, THAT, and Foo.i, where i is a
nonnegative integer. If they need to generate code that uses variables for
temporary storage, VM translators can use the symbols R13, R14, and R15.

7.4.2    The VM Emulator

One relatively simple way to implement a virtual machine is to write a
high-level program that represents the stack and the memory segments and
implements all the VM commands using high-level programming. For
example, if we represent the stack using a sufficiently-large array named
stack, then push and pop operations can be directly realized using high-level
statements like  and  respectively. The virtual
memory segments can also be handled using arrays.

If we want this VM emulation program to be fancy, we can augment it
with a graphical interface, allowing users to experiment with VM
commands and visually inspect their impact on images of the stack and the
memory segments. The Nand to Tetris software suite includes one such
emulator, written in Java (see figure 7.6). This handy program allows
loading and executing VM code as is and observing visually, during
simulated run-time, how the VM commands effect the states of the
emulated stack and memory segments. In addition, the emulator shows how
the stack and the memory segments are mapped on the host RAM and how
the RAM state changes when VM commands execute. The supplied VM
emulator is a cool program—try it!



Figure 7.6    The VM emulator supplied with the Nand to Tetris software suite.

7.4.3    Design Suggestions for the VM Implementation

Usage: The VM translator accepts a single command-line argument, as
follows:

prompt> VMTranslator source

where source is a file name of the form ProgName.vm. The file name may
contain a file path. If no path is specified, the VM translator operates on the
current folder. The first character in the file name must be an uppercase
letter, and the vm extension is mandatory. The file contains a sequence of
one or more VM commands. In response, the translator creates an output
file, named ProgName.asm, containing the assembly instructions that realize
the VM commands. The output file ProgName.asm is stored in the same
folder as that of the input. If the file ProgName.asm already exists, it will be
overwritten.

Program Structure

We propose implementing the VM translator using three modules: a main
program called VMTranslator, a Parser, and a CodeWriter. The Parser’s job is to



make sense out of each VM command, that is, understand what the
command seeks to do. The CodeWriter’s job is to translate the understood VM
command into assembly instructions that realize the desired operation on
the Hack platform. The VMTranslator drives the translation process.

The Parser

This module handles the parsing of a single .vm file. The parser provides
services for reading a VM command, unpacking the command into its
various components, and providing convenient access to these components.
In addition, the parser ignores all white space and comments. The parser is
designed to handle all the VM commands, including the branching and
function commands that will be implemented in chapter 8.



For example, if the current command is push local 2, then calling arg1() and
arg2() would return, respectively, "local" and 2. If the current command is add,
then calling arg1() would return "add", and arg2() would not be called.

The CodeWriter

This module translates a parsed VM command into Hack assembly code.



For example, calling writePushPop (C_PUSH,"local",2) would result in
generating assembly instructions that implement the VM command push
local 2. Another example: Calling WriteArithmetic("add") would result in
generating assembly instructions that pop the two topmost elements from
the stack, add them up, and push the result onto the stack.

The VM Translator

This is the main program that drives the translation process, using the
services of a Parser and a CodeWriter. The program gets the name of the input
source file, say Prog.vm, from the command-line argument. It constructs a
Parser for parsing the input file Prog.vm and creates an output file, Prog.asm,
into which it will write the translated assembly instructions. The program
then enters a loop that iterates through the VM commands in the input file.
For each command, the program uses the Parser and the CodeWriter services
for parsing the command into its fields and then generating from them a
sequence of assembly instructions. The instructions are written into the
output Prog.asm file.

We provide no API for this module, inviting you to implement it as you
see fit.

Implementation Tips

1. When starting to translate a VM command, for example, push local 2,
consider generating, and emitting to the output assembly code stream, a



comment like // push local 2. These comments will help you read the
generated code and debug your translator if needed.

2. Almost every VM command needs to push data onto and/or pop data off
the stack. Therefore, your writeXxx routines will need to output similar
assembly instructions over and over. To avoid writing repetitive code,
consider writing and using private routines (sometimes called helper
methods) that generate these frequently used code snippets.

3. As was explained in chapter 6, it is recommended to end each machine
language program with an infinite loop. Therefore, consider writing a
private routine that writes the infinite loop code in assembly. Call this
routine once, when you are done translating all the VM commands.

7.5    Project

Basically, you have to write a program that reads VM commands, one
command at a time, and translates each command into Hack instructions.
For example, how should we handle the VM command push local 2? Tip: We
should write several Hack assembly instructions that, among other things,
manipulate the SP and LCL pointers. Coming up with a sequence of Hack
instructions that realizes each one of the VM arithmetic-logical and
push/pop commands is the very essence of this project. That’s what code
generation is all about.

We recommend you start by writing and testing these assembly code
snippets on paper. Draw a RAM segment, draw a trace table that records the
values of, say, SP and LCL, and initialize these variables to arbitrary memory
addresses. Now, track on paper the assembly code that you think realizes
say, push local 2. Does the code impact the stack and the local segments
correctly (RAM-wise)? Did you remember to update the stack pointer? And
so on. Once you feel confident that your assembly code snippets do their
jobs correctly, you can have your CodeWriter generate them, almost as is.

Since your VM translator has to write assembly code, you must flex your
low-level Hack programming muscles. The best way to do it is by
reviewing the assembly program examples in chapter 4 and the programs



that you wrote in project 4. If you need to consult the Hack assembly
language documentation, see section 4.2.

Objective: Build a basic VM translator designed to implement the
arithmetic-logical and push / pop commands of the VM language.

This version of the VM translator assumes that the source VM code is
error-free. Error checking, reporting, and handling can be added to later
versions of the VM translator but are not part of project 7.

Resources: You will need two tools: the programming language in which
you will implement the VM translator and the CPU emulator supplied in
your nand2tetris/tools folder. The CPU emulator will allow you to execute and
test the assembly code generated by your translator. If the generated code
runs correctly in the CPU emulator, we will assume that your VM translator
performs as expected. This is just a partial test of the translator, but it will
suffice for our purposes.

Another tool that comes in handy in this project is the VM emulator, also
supplied in your nand2tetris/tools folder. We encourage using this program for
executing the supplied test programs and watching how the VM code
effects the (simulated) states of the stack and the virtual memory segments.
For example, suppose that a test program pushes a few constants onto the
stack and then pops them into the local segment. You can run the test
program on the VM emulator, inspect how the stack grows and shrinks, and
see how the local segment becomes populated with values. This can help you
understand which actions the VM translator is supposed to generate before
setting out to implement it.

Contract: Write a VM-to-Hack translator conforming to the VM
Specification given in section 7.3 and to the standard VM mapping on the
Hack platform given in section 7.4.1. Use your translator to translate the
supplied test VM programs, yielding corresponding programs written in the
Hack assembly language. When executed on the supplied CPU emulator,
the assembly programs generated by your translator should deliver the
results mandated by the supplied test scripts and compare files.

Testing and Implementation Stages



We provide five test VM programs. We advise developing and testing your
evolving translator on the test programs in the order in which they are
given. This way, you will be implicitly guided to build the translator’s code
generation capabilities gradually, according to the demands presented by
each test program.

SimpleAdd: This program pushes two constants onto the stack and adds them
up. Tests how your implementation handles the commands push constant i
and add.

StackTest: Pushes some constants onto the stack and tests how your
implementation handles all the arithmetic-logical commands.

BasicTest: Executes push, pop, and arithmetic commands using the memory
segments constant, local, argument, this, that, and temp. Tests how your
implementation handles these memory segments (you’ve already handled
constant).

PointerTest: Executes push, pop, and arithmetic commands using the
memory segments pointer, this, and that. Tests how your implementation
handles the pointer segment.

StaticTest: Executes push, pop, and arithmetic commands using constants
and the memory segment static. Tests how your implementation handles the
static segment.

Initialization: In order for any translated VM program to start running, it
must include startup code that forces the generated assembly code to start
executing on the host platform. And, before this code starts running, the
VM implementation must anchor the base addresses of the stack and the
virtual memory segments in selected RAM locations. Both issues—startup
code and segments initializations—are described and implemented in the
next chapter. The difficulty here is that we need these initializations in place
for executing the test programs in this project. The good news is that you
need not worry about these details, since all the initializations necessary for
this project are handled “manually” by the supplied test scripts.



Testing / Debugging: We supply five sets of test programs, test scripts, and
compare files. For each test program Xxx.vm we recommend following these
steps:

0.  Use the XxxVME.tst script to execute the test program Xxx.vm on the
supplied VM emulator. This will familiarize you with the intended
behavior of the test program. Inspect the simulated stack and virtual
segments, and make sure that you understand what the test program is
doing.

1.  Use your partially implemented translator to translate the file Xxx.vm
(test program). The result should be a text file named Xxx.asm,
containing the Hack assembly code generated by your translator.

2.  Inspect the generated Xxx.asm code produced by your translator. If there
are visible errors, debug and fix your translator.

3.  Use the supplied Xxx.tst and Xxx.cmp files to run and test your translated
Xxx.asm program on the supplied CPU emulator. If there are any errors,
debug and fix your translator.

When you are done with this project, be sure to save a copy of your VM
translator. In the next chapter you will be asked to extend this program,
adding the handling of more VM commands. If your project 8
modifications end up breaking the code developed in project 7, you’ll be
able to resort to your backup version.

A web-based version of project 7 is available at www.nand2tetris.org.

7.6    Perspective

In this chapter we began the process of developing a compiler for a high-
level language. Following modern software engineering practices, we have
chosen to base the compiler on a two-tier compilation model. In the front-
end tier, covered in chapters 10 and 11, the high-level code is translated into
an intermediate code designed to run on a virtual machine. In the back-end
tier, covered in this and in the next chapter, the intermediate code is

http://www.nand2tetris.org/


translated further into the machine language of a target hardware platform
(see figure 7.1).

Over the years, this two-stage compilation model has been used—
implicitly and explicitly—in many compiler construction projects. In the
late 1970s, IBM and Apple corporations introduced two pioneering and
phenomenally successful personal computers, known as the IBM PC and
the Apple II. One high-level language that became popular on these early
PCs was Pascal. Alas, different Pascal compilers had to be developed, since
the IBM and Apple machines used different processors, different machine
languages, and different operating systems. Also, IBM and Apple were rival
companies and had no interest in helping developers port their software to
the other machine. As a result, software developers who wanted their Pascal
apps to run on both lines of computers had to use different compilers, each
designed to generate machine-specific binary code. Could there not be a
better way to handle cross-platform compilation, so that programs could be
written once and run everywhere?

One solution to this challenge was an early virtual machine framework
called p-code. The basic idea was to compile Pascal programs into
intermediate p-code (similar to our VM language) and then use one
implementation for translating the abstract p-code into Intel’s x86
instruction set, used by IBM PCs, and another implementation for
translating the same p-code into Motorola’s 68000 instruction set, used by
Apple computers. Meanwhile, other companies developed highly optimized
Pascal compilers that generated efficient p-code. The net result was that the
same Pascal program could run as is on practically every machine in this
nascent PC market: no matter which computer your customers used, you
could ship them exactly the same p-code files, obviating the need to use
multiple compilers. Of course, the whole scheme was based on the
assumption that the customer’s computer was equipped with a client-side p-
code implementation (equivalent to our VM translator). To make this
happen, the p-code implementations were distributed freely over the
Internet, and customers were invited to download them to their computers.
Historically, this was perhaps the first time that the notion of a cross-
platform high-level language began realizing its full potential.

Following the explosive growth of the Internet and mobile devices in the
mid-1990s, cross-platform compatibility became a universally vexing issue.



To address the problem, the Sun Microsystems company (later acquired by
Oracle) sought to develop a new programming language whose compiled
code could potentially run as is on any computer and digital device
connected to the Internet. The language that emerged from this initiative—
Java—was founded on an intermediate code execution model called the
Java Virtual Machine, or JVM.

The JVM is a specification that describes an intermediate language called
bytecode—the target VM language of Java compilers. Files written in
bytecode are widely used for code distribution of Java programs over the
Internet. In order to execute these portable programs, the client PCs, tablets,
and cell phones that download them must be equipped with suitable JVM
implementations, known as JREs (Java Runtime Environments). These
programs are widely available for numerous processor and operating system
combinations. Today, many personal computer and cell phone owners use
these infrastructure programs (the JREs) routinely and implicitly, without
ever noticing their existence on their devices.

The Python language, conceived in the late 1980s, is also based on a two-
tier translation model, whose centerpiece is the PVM (Python Virtual
Machine), which uses its own version of bytecode.

In the early 2000s, Microsoft launched its .NET Framework. The
centerpiece of .NET is a virtual machine framework called Common
Language Runtime (CLR). According to Microsoft’s vision, many
programming languages, like C# and C++, can be compiled into
intermediate code running on the CLR. This enables code written in
different languages to interoperate and share the software libraries of a
common run-time environment. Of course, single-tier compilers for C and
C++ are still widely used, especially in high-performance applications
requiring tight and optimized code.

Indeed, one issue that was completely sidestepped in this chapter is
efficiency. Our contract calls for developing a VM translator, without
requiring that the generated assembly code be efficient. Clearly, this is a
serious oversight. The VM translator is a mission-critical enabling
technology, lying at the core of your PC, tablet, or cell phone: if it will
generate tight and efficient low-level code, apps will run on your machine
swiftly, using as little hardware resources as possible. Therefore, optimizing
the VM translator is a top priority.



In general, there are numerous opportunities to optimize the VM
translator. For example, assignments like let  are prevalent in high-level
code; these statements are translated by the compiler into VM commands
like, for example, push local 3 followed by pop static 1. Clever
implementations of such pairs of VM commands can generate assembly
code that sidesteps the stack completely, resulting in dramatic performance
gains. Of course, this is one out of many examples of possible VM
optimizations. Indeed, over the years, the VM implementations of Java,
Python, and C# became dramatically more powerful and sophisticated.

We note in closing that a crucial ingredient that must be added to the
virtual machine model before its full potential is unleashed is a common
software library. Indeed the Java Virtual Machine comes with the standard
Java class library, and the Microsoft’s .NET Framework comes with the
Framework Class Library. These vast software libraries can be viewed as
portable operating systems, providing numerous services like memory
management, GUI toolkits, string functions, math functions, and so on.
These extensions will be described and built in chapter 12.



 

8       Virtual Machine II: Control

If everything seems under control, you’re just not going fast enough.
—Mario Andretti (b. 1940), race car champion

Chapter 7 introduced the notion of a virtual machine (VM), and project 7
began implementing our abstract virtual machine and VM language over
the Hack platform. The implementation entailed developing a program that
translates VM commands into Hack assembly code. Specifically, in the
previous chapter we learned how to use and implement the VM’s
arithmetic-logical commands and push/pop commands; in this chapter we’ll
learn how to use and implement the VM’s branching commands and
function commands. As the chapter progresses, we’ll extend the basic
translator developed in project 7, ending with a full-scale VM translator
over the Hack platform. This translator will serve as the back-end module
of the compiler that we will build in chapters 10 and 11.

In any Gre at Gems in Applied Computer Science contest, stack
processing will be a strong finalist. The previous chapter showed how
arithmetic and Boolean expressions can be represented and evaluated by
elementary operations on a stack. This chapter goes on to show how this
remarkably simple data structure can also support remarkably complex
tasks like nested function calling, parameter passing, recursion, and the
various memory allocation and recycling tasks required to support program
execution during run-time. Most programmers tend to take these services
for granted, expecting the compiler and the operating system to deliver
them, one way or another. We are now in a position to open up this black
box and see how these fundamental programming mechanisms are actually
realized.



Run-time system: Every computer system must specify a run-time model.
This model answers essential questions without which programs cannot run:
how to start a program’s execution, what the computer should do when a
program terminates, how to pass arguments from one function to another,
how to allocate memory resources to running functions, how to free
memory resources when they are no longer needed, and so on.

In Nand to Tetris, these issues are addressed by the VM language
specification, along with the standard mapping on the Hack platform
specification. If a VM translator is developed according to these guidelines,
it will end up realizing an executable run-time system. In particular, the VM
translator will not only translate the VM commands (push, pop, add, and so
on) into assembly instructions—it will also generate assembly code that
realizes an envelope in which the program runs. All the questions
mentioned above—how to start a program, how to manage the function
call-and-return behavior, and so on—will be answered by generating
enabling assembly code that wraps the code proper. Let’s see an example.

8.1    High-Level Magic

High-level languages allow writing programs in high-level terms. For
example, an expression like  can be written as 

 which is almost as descriptive as the real
thing. Note the difference between primitive operations like + and − and
functions like sqrt and power. The former are built into the basic syntax of
the high-level language. The latter are extensions of the basic language.

The unlimited capacity to extend the language at will is one of the most
important features of high-level programming languages. Of course, at
some point, someone must implement functions like sqrt and power.
However, the story of implementing these abstractions is completely
separate from the story of using them. Therefore, application programmers
can assume that each one of these functions will get executed—somehow—
and that following its execution, control will return—somehow—to the next
operation in one’s code. Branching commands endow the language with
additional expressive power, allowing writing conditional code like if !

 Once



again, we see that high-level code enables the expression of high-level logic
—in this case the algorithm for solving quadratic equations—almost
directly.

Indeed, modern programming languages are programmer-friendly,
offering useful and powerful abstractions. It is a sobering thought, though,
that no matter how high we allow our high-level language to be, at the end
of the day it must be realized on some hardware platform that can only
execute primitive machine instructions. Thus, among other things, compiler
and VM architects must find low-level solutions for realizing branching and
function call-and-return commands.

Functions—the bread and butter of modular programming—are
standalone programming units that are allowed to call each other for their
effect. For example, solve can call sqrt, and sqrt, in turn, can call power. This
calling sequence can be as deep as we please, as well as recursive.
Typically, the calling function (the caller) passes arguments to the called
function (the callee) and suspends its execution until the latter completes its
execution. The callee uses the passed arguments to execute or compute
something and then returns a value (which may be void) to the caller. The
caller then snaps back into action, resuming its execution.

In general then, whenever one function (the caller) calls a function (the
callee), someone must take care of the following overhead:

Save the return address, which is the address within the caller’s code to
which execution must return after the callee completes its execution;
Save the memory resources of the caller;
Allocate the memory resources required by the callee;
Make the arguments passed by the caller available to the callee’s code;
Start executing the callee’s code.

When the callee terminates and returns a value, someone must take care of
the following overhead:

Make the callee’s return value available to the caller’s code;
Recycle the memory resources used by the callee;
Reinstate the previously saved memory resources of the caller;



Retrieve the previously saved return address;
Resume executing the caller’s code, from the return address onward.

Blissfully, high-level programmers don’t have to ever think about all these
nitty-gritty chores: the assembly code generated by the compiler handles
them, stealthily and efficiently. And, in a two-tier compilation model, this
housekeeping responsibility falls on the compiler’s back end, which is the
VM translator that we are now developing. Thus, in this chapter, we will
uncover, among other things, the run-time framework that enables what is
probably the most important abstraction in the art of programming: function
call-and-return. But first, let’s start with the easier challenge of handling
branching commands.

8.2    Branching

The default flow of computer programs is sequential, executing one
command after the other. For various reasons like embarking on a new
iteration in a loop, this sequential flow can be redirected by branching
commands. In low-level programming, branching is accomplished by goto
destination commands. The destination specification can take several
forms, the most primitive being the physical memory address of the
instruction that should be executed next. A slightly more abstract
specification is established by specifying a symbolic label (bound to a
physical memory address). This variation requires that the language be
equipped with a labeling directive, designed to assign symbolic labels to
selected locations in the code. In our VM language, this is done using a
labeling command whose syntax is label symbol.

With that in mind, the VM language supports two forms of branching.
Unconditional branching is effected using a goto symbol command, which
means: jump to execute the command just after the label symbol command in
the code. Conditional branching is effected using the if-goto symbol
command, whose semantics is: Pop the topmost value off the stack; if it’s
not false, jump to execute the command just after the label symbol command;
otherwise, execute the next command in the code. This contract implies that
before specifying a conditional goto command, the VM code writer (for



example, a compiler) must first specify a condition. In our VM language,
this is done by pushing a Boolean expression onto the stack. For example,
the compiler that we’ll develop in chapters 10–11 will translate if 
goto LOOP into push n, push 100, lt, if-goto LOOP.

Example: Consider a function that receives two arguments, x and y, and
returns the product x ∙ y. This can be done by adding x repetitively to a local
variable, say sum, y times, and then returning sum’s value. A function that
implements this naïve multiplication algorithm is listed in figure 8.1. This
example illustrates how a typical looping logic can be expressed using the
VM branching commands goto, if-goto, and label.

Figure 8.1    Branching commands action. (The VM code on the right uses symbolic variable names
instead of virtual memory segments, to make it more readable.)

Notice how the Boolean condition !  implemented as push i, push y, lt,
ng, is pushed onto the stack just before the if-goto WHILE_END command. In



chapter 7 we saw that VM commands can be used to express and evaluate
any Boolean expression. As we see in figure 8.1, high-level control
structures like if and while can be easily realized using nothing more than goto
and if-goto commands. In general, any flow of control structure found in
high-level programming languages can be realized using our (rather
minimal set of) VM logical and branching commands.

Implementation: Most low-level machine languages, including Hack,
feature means for declaring symbolic labels and for effecting conditional
and unconditional “goto label” actions. Therefore, if we base the VM
implementation on a program that translates VM commands into assembly
instructions, implementing the VM branching commands is a relatively
simple matter.

Operating system: We end this section with two side comments. First, VM
programs are not written by humans. Rather, they are written by compilers.
Figure 8.1 illustrates source code on the left and VM code on the right. In
chapters 10–11 we’ll develop a compiler that translates the former into the
latter. Second, note that the mult implementation shown in figure 8-1 is
inefficient. Later in the book we’ll present optimized multiplication and
division algorithms that operate at the bit level. These algorithms will be
used for realizing the Math.multiply and Math.divide functions, which are part of
the operating system that we will build in chapter 12.

Our OS will be written in the Jack language, and translated by a Jack
compiler into the VM language. The result will be a library of eight files
named Math.vm, Memory.vm, String.vm, Array.vm, Output.vm, Screen.vm, Keyboard.vm,
and Sys.vm (the OS API is given in appendix 6). Each OS file features a
collection of useful functions that any VM function is welcome to call for
their effect. For example, whenever a VM function needs multiplication or
division services, it can call the Math.multiply or Math.divide function.

8.3    Functions

Every programming language is characterized by a fixed set of built-in
operations. In addition, high-level and some low-level languages offer the



great freedom of extending this fixed repertoire with an open-ended
collection of programmer-defined operations. Depending on the language,
these canned operations are typically called subroutines, procedures,
methods, or functions. In our VM language, all these programming units are
referred to as functions.

In well-designed languages, built-in commands and programmer-defined
functions have the same look and feel. For example, to compute  on our
stack machine, we push x, push y, and add. In doing so, we expect the add
implementation to pop the two top values off the stack, add them up, and
push the result onto the stack. Suppose now that either we, or someone else,
has written a power function designed to compute . To use this function,
we follow exactly the same routine: we push x, push y, and call power. This
consistent calling protocol allows composing primitive commands and
function calls seamlessly. For example, expressions like  can be
evaluated using push x, push y, add, push 3, call power.

We see that the only difference between applying a primitive operation
and invoking a function is the keyword call preceding the latter. Everything
else is exactly the same: both operations require the caller to set the stage
by pushing arguments onto the stack, both operations are expected to
consume their arguments, and both operations are expected to push return
values onto the stack. This calling protocol has an elegant consistency
which, we hope, is not lost on the reader.

Example: Figure 8.2 shows a VM program that computes the function 
, also known as hypot. The program consists of three functions, with

the following run-time behavior: main calls hypot, and then hypot calls mult,
twice. There is also a call to a sqrt function, which we don’t track, to reduce
clutter.



Figure 8.2    Run-time snapshots of selected stack and segment states during the execution of a three-
function program. The line numbers are not part of the code and are given for reference only.

The bottom part of figure 8.2 shows that during run-time, each function
sees a private world, consisting of its own working stack and memory
segments. These separate worlds are connected through two “wormholes”:
when a function says call mult, the arguments that it pushed onto its stack
prior to the call are somehow passed to the argument segment of the callee.
Likewise, when a function says return, the last value that it pushed onto its
stack just before returning is somehow copied onto the stack of the caller,
replacing the previously pushed arguments. These hand-shaking actions are
carried out by the VM implementation, as we now turn to describe.



Implementation: A computer program consists of typically several and
possibly many functions. Yet at any given point during run-time, only a few
of these functions are actually doing something. We use the term calling
chain to refer, conceptually, to all the functions that are currently involved
in the program’s execution. When a VM program starts running, the calling
chain consists of one function only, say, main. At some point, main may call
another function, say, foo, and that function may call yet another function,
say, bar. At this point the calling chain is  Each function in
the calling chain waits for the function that it called to return. Thus, the
only function that is truly active in the calling chain is the last one, which
we call the current function, meaning the currently executing function.

In order to carry out their work, functions normally use local and
argument variables. These variables are temporary: the memory segments
that represent them must be allocated when the function starts executing
and can be recycled when the function returns. This memory management
task is complicated by the requirement that function calling is allowed to be
arbitrarily nested, as well as recursive. During run-time, each function call
must be executed independently of all the other calls and maintain its own
stack, local variables, and argument variables. How can we implement this
unlimited nesting mechanism and the memory management tasks associated
with it?

The property that makes this housekeeping task tractable is the linear
nature of the call-and-return logic. Although the function calling chain may
be arbitrarily deep as well as recursive, at any given point in time only one
function executes at the chain’s end, while all the other functions up the
calling chain are waiting for it to return. This Last-In-First-Out processing
model lends itself perfectly to the stack data structure, which is also LIFO.
Let’s takes a closer look.

Assume that the current function is foo. Suppose that foo has already
pushed some values onto its working stack and has modified some entries
in its memory segments. Suppose that at some point foo wants to call
another function, bar, for its effect. At this point we have to put foo’s
execution on hold until bar will terminate its execution. Now, putting foo’s
working stack on hold is not a problem: because the stack grows only in
one direction, the working stack of bar will never override previously
pushed values. Therefore, saving the working stack of the caller is easy—



we get it “for free” thanks to the linear and unidirectional stack structure.
But how can we save foo’s memory segments? Recall that in chapter 7 we
used the pointers LCL, ARG, THIS, and THAT to refer to the base RAM
addresses of the local, argument, this, and that segments of the current function.
If we wish to put these segments on hold, we can push their pointers onto
the stack and pop them later, when we’ll want to bring foo back to life. In
what follows, we use the term frame to refer, collectively, to the set of
pointer values needed for saving and reinstating the function’s state.

We see that once we move from a single function setting to a
multifunction setting, the humble stack begins to attain a rather formidable
role in our story. Specifically, we now use the same data structure to hold
both the working stacks as well as the frames of all the functions up the
calling chain. To give it the respect that it deserves, from now on we’ll refer
to this hard-working data structure as the global stack. See figure 8.3 for the
details.

Figure 8.3    The global stack, shown when the callee is running. Before the callee terminates, it
pushes a return value onto the stack (not shown). When the VM implementation handles the return
command, it copies the return value onto argument 0, and sets SP to point to the address just



following it. This effectively frees the global stack area below the new value of SP. Thus, when the
caller resumes its execution, it sees the return value at the top of its working stack.

As shown in figure 8.3, when handling the call functionName command,
the VM implementation pushes the caller’s frame onto the stack. At the end
of this housekeeping, we are ready to jump to executing the callee’s code.
This mega jump is not hard to implement. As we’ll see later, when handling
a function functionName command, we use the function’s name to create, and
inject into the generated assembly code stream, a unique symbolic label that
marks where the function starts. Thus, when handling a “function
functionName” command, we can generate assembly code that effects a
“goto functionName” operation. When executed, this command will
effectively transfer control to the callee.

Returning from the callee to the caller when the former terminates is
trickier, since the VM return command specifies no return address. Indeed,
the caller’s anonymity is inherent in the notion of a function call: functions
like mult or sqrt are designed to serve any caller, implying that a return
address cannot be specified a priori. Instead, a return command is interpreted
as follows: redirect the program’s execution to the memory location holding
the command just following the call command that invoked the current
function.

The VM implementation can realize this contract by (i) saving the return
address just before control is transferred to executing the caller and (ii)
retrieving the return address and jumping to it just after the callee returns.
But where shall we save the return address? Once again, the resourceful
stack comes to the rescue. To remind you, the VM translator advances from
one VM command to the next, generating assembly code as it goes along.
When we encounter a call foo command in the VM code, we know exactly
which command should be executed when foo terminates: it’s the assembly
command just after the assembly commands that realize the call foo
command. Thus, we can have the VM translator plant a label right there, in
the generated assembly code stream, and push this label onto the stack.
When we later encounter a return command in the VM code, we can pop the
previously saved return address off the stack—let’s call it returnAddress—
and effect the operation goto returnAddress in assembly. This is the low-



level trick that enables the run-time magic of redirecting control back to the
right place in the caller’s code.

The VM implementation in action: We now turn to give a step-by-step
illustration of how the VM implementation supports the function call-and-
return action. We will do it in the context of executing a factorial function,
designed to compute n! recursively. Figure 8.4 gives the program’s code,
along with selected snapshots of the global stack during the execution of
factorial(3). A complete run-time simulation of this computation should also
include the call-and-return action of the mult function, which, in this
particular run-time example, is called twice: once before factorial(2) returns,
and once before factorial(3) returns.



Figure 8.4    Several snapshots of the global stack, taken during the execution of the main function,
which calls factorial to compute 3!. The running function sees only its working stack, which is the
unshaded area at the tip of the global stack; the other unshaded areas in the global stack are the
working stacks of functions up the calling chain, waiting for the currently running function to return.
Note that the shaded areas are not “drawn to scale,” since each frame consists of five words, as
shown in figure 8.3.

Focusing on the leftmost and rightmost parts of the bottom of figure 8.4,
here is what transpired from main’s perspective: “To set the stage, I pushed
the constant 3 onto the stack, and then called factorial for its effect (see the
leftmost stack snapshot). At this point I was put to sleep; at some later point
in time I was woken up to find out that the stack now contains 6 (see the
final and rightmost stack snapshot); I have no idea how this magic



happened, and I don’t really care; all I know is that I set out to compute 3!,
and I got exactly what I asked for.” In other words, the caller is completely
oblivious of the elaborate mini-drama that was unleashed by its call
command.

As seen in figure 8.4, the back stage on which this drama plays out is the
global stack, and the choreographer who runs the show is the VM
implementation: Each call operation is implemented by saving the frame of
the caller on the stack and jumping to execute the callee. Each return
operation is implemented by (i) using the most recently stored frame for
getting the return address within the caller’s code and reinstating its
memory segments, (ii) copying the topmost stack value (the return value)
onto the stack location associated with argument 0, and (iii) jumping to
execute the caller’s code from the return address onward. All these
operations must be realized by generated assembly code.

Some readers may wonder why we have to get into all these details.
There are at least three reasons why. First, we need them in order to
implement the VM translator. Second, the implementation of the function
call-and-return protocol is a beautiful example of low-level software
engineering, so we can simply enjoy seeing it in action. Third, an intimate
understanding of the virtual machine internals helps us become better and
more informed high-level programmers. For example, tinkering with the
stack provides an in-depth understanding of the benefits and pitfalls
associated with recursion. Note that during run-time, each recursive call
causes the VM implementation to add to the stack a memory block
consisting of arguments, function frames, local variables, and a working
stack for the callee. Therefore, unchecked use of recursion may well lead to
the infamous stack overflow run-time debacle. This, as well as efficiency
considerations, leads compiler writers to try to reexpress recursive code as
sequential code, where possible. But that’s a different story that will be
taken up in chapter 11.



8.4    VM Specification, Part II

So far in this chapter, we have presented general VM commands without
committing to exact syntax and programming conventions. We now turn to
specify formally the VM branching commands, the VM function
commands, and the structure of VM programs. This completes the
specification of the VM language that we began describing in VM
Specification, Part I, in chapter 7.

It’s important to reiterate that, normally, VM programs are not written by
humans. Rather, they are generated by compilers. Therefore, the
specifications described here are aimed at compiler developers. That is, if
you write a compiler that is supposed to translate programs from some
high-level language into VM code, the code that your compiler generates is
expected to conform to the conventions described here.

Branching Commands

label label: Labels the current location in the function’s code. Only labeled
locations can be jumped to. The scope of the label is the function in which
it is defined. The label is a string composed of any sequence of letters,
digits, underscore (_), dot (.), and colon (:) that does not begin with a digit.
The label command can be located anywhere in the function, before or
after the goto commands that refer to it.
goto label: Effects an unconditional goto operation, causing execution to
continue from the location marked by the label. The goto command and
the labeled jump destination must be located in the same function.
if-goto label: Effects a conditional goto operation. The stack’s topmost
value is popped; if the value is not zero, execution continues from the
location marked by the label; otherwise, execution continues from the
next command in the program. The if-goto command and the labeled jump
destination must be located in the same function.

Function Commands



function functionName nVars: Marks the beginning of a function named
functionName. The command informs that the function has nVars local
variables.
call functionName nArgs: Calls the named function. The command informs
that nArgs arguments have been pushed onto the stack before the call.
return: Transfers execution to the command just following the call
command in the code of the function that called the current function.

VM Program

VM programs are generated from high-level programs written in languages
like Jack. As we’ll see in the next chapter, a high-level Jack program is
loosely defined as a collection of one or more .jack class files stored in the
same folder. When applied to that folder, the Jack compiler translates each
class file FileName.jack into a corresponding file named FileName.vm,
containing VM commands.

Following compilation, each constructor, function (static method), and
method named bar in a Jack file FileName.jack is translated into a
corresponding VM function, uniquely identified by the VM function name
FileName.bar. The scope of VM function names is global: all the VM
functions in all the .vm files in the program folder see each other and may
call each other using the unique and full function name
FileName.functionName.

Program entry point: One file in any Jack program must be named
Main.jack, and one function in this file must be named main. Thus, following
compilation, one file in any VM program is expected to be named Main.vm,
and one VM function in this file is expected to be named Main.main, which is
the application’s entry point. This run-time convention is implemented as
follows. When we start running a VM program, the first function that
always executes is an argument-less VM function named Sys.init, which is
part of the operating system. This OS function is programmed to call the
entry point function in the user’s program. In the case of Jack programs,
Sys.init is programmed to call Main.main.



Program execution: There are several ways to execute VM programs, one
of which is using the supplied VM emulator introduced in chapter 7. When
you load a program folder containing one or more .vm files into the VM
emulator, the emulator loads all the VM functions in all these files, one after
the other (the order of the loaded VM functions is insignificant). The
resulting code base is a sequence of all the VM functions in all the .vm files
in the program folder. The notion of VM files ceases to exist, although it is
implicit in the names of the loaded VM functions
(FileName.functionName).

The Nand to Tetris VM emulator, which is a Java program, features a
built-in implementation of the Jack OS, also written in Java. When the
emulator detects a call to an OS function, for example, call Math.sqrt, it
proceeds as follows. If it finds a corresponding function Math.sqrt command in
the loaded VM code, the emulator executes the function’s VM code.
Otherwise, the emulator reverts to using its built-in implementation of the
Math.sqrt method. This implies that as long as you use the supplied VM
emulator for executing VM programs, there is no need to include OS files
in your code. The VM emulator will service all the OS calls found in your
code, using its built-in OS implementation.

8.5    Implementation

The previous section completed the specification of our VM language and
framework. In this section we focus on implementation issues, leading up to
the construction of a full-scale, VM-to-Hack translator. Section 8.5.1
proposes how to implement the function call-and-return protocol. Section
8.5.2 completes the standard mapping of the VM implementation over the
Hack platform. Section 8.5.3 gives a proposed design and API for
completing the VM translator that we began building in project 7.

8.5.1    Function Call and Return

The events of calling a function and returning from a function call can be
viewed from two perspectives: that of the calling function, also referred to
as caller, and that of the called function, also referred to as callee. Both the



caller and the callee have certain expectations, and certain responsibilities,
regarding the handling of the call, function, and return commands. Fulfilling
the expectations of one is the responsibility of the other. In addition, the
VM implementation plays an important role in executing this contract. In
what follows, the responsibilities of the VM implementation are marked by
[†]:

The caller’s view: The callee’s view:

•  Before calling a function, I must
push onto the stack as many
arguments (nArgs) as the callee
expects to get.

•  Next, I invoke the callee using the
command call
fileName.functionName nArgs.

•  After the callee returns, the
argument values that I pushed before
the call have disappeared from the
stack, and a return value (that always
exists) appears at the top of the
stack. Except for this change, my
working stack is exactly the same as
it was before the call [†].

•  After the callee returns, all my
memory segments are exactly the
same as they were before the call
[†], except that the contents of my
static segment may have changed,
and the temp segment is undefined.

•  Before I start executing, my argument segment has
been initialized with the argument values passed by the
caller, and my local variables segment has been
allocated and initialized to zeros. My static segment
has been set to the static segment of the VM file to
which I belong, and my working stack is empty. The
memory segments this, that, pointer, and temp are
undefined upon entry [†].

•  Before returning, I must push a return value onto the
stack.

The VM implementation supports this contract by maintaining, and
manipulating, the global stack structure described in figure 8.3. In
particular, every function, call, and return command in the VM code is handled
by generating assembly code that manipulates the global stack as follows: A
call command generates code that saves the frame of the caller on the stack
and jumps to execute the callee. A function command generates code that
initializes the local variables of the callee. Finally, a return command
generates code that copies the return value to the top of the caller’s working



stack, reinstates the segment pointers of the caller, and jumps to execute the
latter from the return address onward. See figure 8.5 for the details.

Figure 8.5    Implementation of the function commands of the VM language. All the actions
described on the right are realized by generated Hack assembly instructions.

8.5.2    Standard VM Mapping on the Hack Platform, Part II

Developers of the VM implementation on the Hack computer are advised to
follow the conventions described here. These conventions complete the
Standard VM Mapping on the Hack Platform, Part I, guidelines given in
section 7.4.1.

The stack: On the Hack platform, RAM locations 0 to 15 are reserved for
pointers and virtual registers, and RAM locations 16 to 255 are reserved for
static variables. The stack is mapped on address 256 onward. To realize this
mapping, the VM translator should start by generating assembly code that
sets SP to 256. From this point onward, when the VM translator encounters



commands like pop, push, add, and so on in the source VM code, it generates
assembly code that affects these operations by manipulating the address that
SP points at, and modifying SP, as needed. These actions were explained in
chapter 7 and implemented in project 7.

Special symbols: When translating VM commands into Hack assembly, the
VM translator deals with two types of symbols. First, it manages predefined
assembly-level symbols like SP, LCL, and ARG. Second, it generates and uses
symbolic labels for marking return addresses and function entry points. To
illustrate, let us revisit the PointDemo program presented in the introduction
to part II. This program consists of two Jack class files, Main.jack (figure II.1)
and Point.jack (figure II.2), stored in a folder named PointDemo. When applied
to the PointDemo folder, the Jack compiler produces two VM files, named
Main.vm and Point.vm. The first file contains a single VM function, Main.main,
and the second file contains the VM functions Point.new, Point.getx, …,
Point.print.

When the VM translator is applied to this same folder, it produces a
single assembly code file, named PointDemo.asm. At the assembly code level,
the function abstractions no longer exist. Instead, for each function command,
the VM translator generates an entry label in assembly; for each call
command, the VM translator (i) generates an assembly goto instruction, (ii)
creates a return address label and pushes it onto the stack, and (iii) injects
the label into the generated code. For each return command, the VM
translator pops the return address off the stack and generates a goto
instruction. For example:



Figure 8.6 specifies all the symbols that the VM translator handles and
generates.

Figure 8.6    The naming conventions described above are designed to support the translation of
multiple .vm files and functions into a single .asm file, ensuring that the generated assembly
symbols will be unique within the file.

Bootstrap code: The standard VM mapping on the Hack platform
stipulates that the stack be mapped on the host RAM from address 256
onward, and that the first VM function that should start executing is the OS
function Sys.init. How can we effect these conventions on the Hack
platform? Recall that when we built the Hack computer in chapter 5, we
wired it in such a way that upon reset, it will fetch and execute the
instruction located in ROM address 0. Thus, if we want the computer to
execute a predetermined code segment when it boots up, we can put this



code in the Hack computer’s instruction memory, starting at address 0. Here
is the code:

// Bootstrap (pseudo) code, should be expressed in machine language
SP = 256
call Sys.init

The Sys.init function, which is part of the operating system, is then expected
to call the main function of the application, and enter an infinite loop. This
action will cause the translated VM program to start running. Note that the
notions of application and main function vary from one high-level language
to another. In the Jack language, the convention is that Sys.init should call the
VM function Main.main. This is similar to the Java setting: when we instruct
the JVM to execute a given Java class, say, Foo, it looks for, and executes,
the Foo.main method. In general, we can effect language-specific startup
routines by using different versions of the Sys.init function.

Usage: The translator accepts a single command-line argument, as follows,

prompt> VMTranslator source

where source is either a file name of the form Xxx.vm (the extension is
mandatory) or the name of a folder (in which case there is no extension)
containing one or more .vm files. The file/folder name may contain a file
path. If no path is specified, the translator operates on the current folder.
The output of the VM translator is a single assembly file, named source.asm.
If source is a folder name, the single .asm file contains the translation of all
the functions in all the .vm files in the folder, one after the other. The output
file is created in the same folder as the input file. If there is a file by this
name in the folder, it will be overwritten.

8.5.3    Design Suggestions for the VM Implementation

In project 7 we proposed building the basic VM translator using three
modules: VMTranslator, Parser, and CodeWriter. We now describe how to extend
this basic implementation into a full-scale VM translator. This extension
can be accomplished by adding the functionality described below to the



three modules already built in project 7. There is no need to develop
additional modules.

The VMTranslator

If the translator’s input is a single file, say Prog.vm, the VMTranslator
constructs a Parser for parsing Prog.vm and a CodeWriter that starts by creating
an output file named Prog.asm. Next, the VMTranslator enters a loop that uses
the Parser services for iterating through the input file and parsing each line
as a VM command, barring white space. For each parsed command, the
VMTranslator uses the CodeWriter for generating Hack assembly code and
emitting the generated code into the output file. All this was already done in
project 7.

If the translator’s input is a folder, named, say, Prog, the VMTranslator
constructs a Parser for handling each .vm file in the folder, and a single
CodeWriter for generating Hack assembly code into the single output file
Prog.asm. Each time the VMTranslator starts translating a new .vm file in the
folder, it must inform the CodeWriter that a new file is now being processed.
This is done by calling a CodeWriter routine named setFileName, as we now
turn to describe.

The Parser

This module is identical to the Parser developed in project 7.

The CodeWriter

The CodeWriter developed in project 7 was designed to handle the VM
arithmetic-logical and push / pop commands. Here is the API of a complete
CodeWriter that handles all the commands in the VM language:



8.6    Project



In a nutshell, we have to extend the basic translator developed in chapter 7
with the ability to handle multiple .vm files and the ability to translate VM
branching commands and VM function commands into Hack assembly
code. For each parsed VM command, the VM translator has to generate
assembly code that implements the command’s semantics on the host Hack
platform. The translation of the three branching commands into assembly is
not difficult. The translation of the three function commands is more
challenging and entails implementing the pseudocode listed in figure 8.5,
using the symbols described in figure 8.6. We repeat the suggestion given in
the previous chapter: Start by writing the required assembly code on paper.
Draw RAM and global stack images, keep track of the stack pointer and the
relevant memory segment pointers, and make sure that your paper-based
assembly code successfully implements all the low-level actions associated
with handling the call, function, and return commands.

Objective: Extend the basic VM translator built in project 7 into a full-scale
VM translator, designed to handle multi-file programs written in the VM
language.

This version of the VM translator assumes that the source VM code is
error-free. Error checking, reporting, and handling can be added to later
versions of the VM translator but are not part of project 8.

Contract: Complete the construction of a VM-to-Hack translator,
conforming to VM Specification, Part II (section 8.4) and to the Standard
VM Mapping on the Hack Platform, Part II (section 8.5.2). Use your
translator to translate the supplied VM test programs, yielding
corresponding programs written in the Hack assembly language. When
executed on the supplied CPU emulator along with the supplied test scripts,
the assembly programs generated by your translator should deliver the
results mandated by the supplied compare files.

Resources: You will need two tools: the programming language in which
you will implement your VM translator and the CPU emulator supplied in
the Nand to Tetris software suite. Use the CPU emulator to execute and test
the assembly code generated by your translator. If the generated code runs



correctly, we will assume that your VM translator performs as expected.
This partial test of the translator will suffice for our purposes.

Another tool that comes in handy in this project is the supplied VM
emulator. Use this program to execute the supplied test VM programs, and
watch how the VM code effects the simulated states of the stack and the
virtual memory segments. This can help understand the actions that the VM
translator must eventually realize in assembly.

Since the full-scale VM translator is implemented by extending the VM
translator built in project 7, you will also need the source code of the latter.

Testing and Implementation Stages

We recommend completing the implementation of the VM translator in two
stages. First, implement the branching commands, and then the function
commands. This will allow you to unit-test your implementation
incrementally, using the supplied test programs.

Testing the Handling of the VM Commands label, if, if-goto:
BasicLoop: Computes  and pushes the result onto the
stack. Tests how the VM translator handles the label and if-goto commands.
FibonacciSeries: Computes and stores in memory the first n elements of the
Fibonacci series. A more rigorous test of handling the label, goto, and if-goto
commands.

Testing the Handling of the VM Commands call, function, return:
Unlike what we did in project 7, we now expect the VM translator to handle
multi-file programs. We remind the reader that by convention, the first
function that starts running in a VM program is Sys.init. Normally, Sys.init is
programmed to call the program’s Main.main function. For the purpose of this
project, though, we use the supplied Sys.init functions for setting the stage
for the various tests that we wish to perform.

SimpleFunction: Performs a simple calculation and returns the result. Tests
how the VM translator handles the function and return commands. Since this
test entails the handling of a single file consisting of a single function, no
Sys.init test function is needed.



FibonacciElement: This test program consists of two files: Main.vm contains a
single Fibonacci function that returns recursively the n-th element of the
Fibonacci series; Sys.vm contains a single Sys.init function that calls
Main.fibonacci with  and then enters an infinite loop (recall that the VM
translator generates bootstrap code that calls Sys.init). The resulting setting
provides a rigorous test of the VM translator’s handling of multiple .vm
files, the VM function-call-and-return commands, the bootstrap code, and
most of the other VM commands. Since the test program consists of two
.vm files, the entire folder must be translated, producing a single
FibonacciElement.asm file.
StaticsTest: This test program consists of three files: Class1.vm and Class2.vm
contain functions that set and get the values of several static variables;
Sys.vm contains a single Sys.init function that calls these functions. Since
the program consists of several .vm files, the entire folder must be
translated, producing a single StaticsTest.asm file.

Implementation Tips

Since project 8 is based on extending the basic VM translator developed in
project 7, we advise making a backup copy of the source code of the latter
(if you haven’t done it already).

Start by figuring out the assembly code that is necessary to realize the
logic of the VM commands label, goto, and if-goto. Next, proceed to
implement the methods writeLabel, writeGoto, and writeIf of the CodeWriter. Test
your evolving VM translator by having it translate the supplied BasicLoop.vm
and FibonacciSeries.vm programs.

Bootstrapping code: In order for any translated VM program to start
running, it must include startup code that forces the VM implementation to
start executing the program on the host platform. Further, for any VM code
to operate properly, the VM implementation must store the base addresses
of the stack and the virtual segments in the correct locations in the host
RAM. The first three test programs in this project (BasicLoop, FibonaciiSeries,
SimpleFunction) assume that the startup code was not yet implemented, and
include test scripts that effect the necessary initializations manually,
meaning that at this development stage you don’t have to worry about it.



The last two test programs (FibonaciiElement and StaticsTest) assume that the
startup code is already part of the VM implementation.

With that in mind, the constructor of the CodeWriter must be developed in
two stages. The first version of your constructor must not generate any
bootstrapping code (that is, ignore the constructor’s API guideline
beginning with the text “Writes the assembly instructions …”). Use this
version of your translator for unit-testing the programs BasicLoop,
FibonaciiSeries, and SimpleFunction. The second and final version of your
CodeWriter constructor must write the bootstrapping code, as specified in the
constructor’s API. This version should be used for unit-testing
FibonaciiElement and StaticsTest.

The supplied test programs were carefully planned to test the specific
features of each stage in your VM implementation. We recommend
implementing your translator in the proposed order, and testing it using the
appropriate test programs at each stage. Implementing a later stage before
an early one may cause the test programs to fail.

A web-based version of project 8 is available at www.nand2tetris.org.

8.7    Perspective

The notions of branching and function calling are fundamental to all high-
level languages. This means that somewhere down the translation path from
a high-level language to binary code, someone must take care of handling
the intricate housekeeping chores related to their implementation. In Java,
C#, Python, and Jack, this burden falls on the virtual machine level. And if
the VM architecture is stack-based, it lends itself nicely to the job, as we
have seen throughout this chapter.

To appreciate the expressive power of our stack-based VM model, take a
second look at the programs presented in this chapter. For example, figures
8.1 and 8.4 present high-level programs and their VM translations. If you
do some line counting, you will note that each line of high-level code
generates an average of about four lines of compiled VM code. As it turns
out, this 1:4 translation ratio is quite consistent when compiling Jack
programs into VM code. Even without knowing much about the art of

http://www.nand2tetris.org/


compilation, one can appreciate the brevity and readability of the VM code
generated by the compiler. For example, as we will see when we build the
compiler, a high-level statement like let  is translated into
push x, call Math.sqrt, pop y. The two-tier compiler can get away with so little
work since it counts on the VM implementation for handling the rest of the
translation. If we had to translate high-level statements like let

 directly into Hack code, without having the benefit of an
intermediate VM layer, the resulting code would be far less elegant, and
more cryptic.

That said, it would also be more efficient. Let us not forget that the VM
code must be realized in machine language—that’s what projects 7 and 8
are all about. Typically, the final machine code resulting from a two-tier
translation process is longer and less efficient than that generated from
direct translation. So, which is more desirable: a two-tier Java program that
eventually generates one thousand machine instructions or an equivalent
one-tier C++ program that generates seven hundred instructions? The
pragmatic answer is that each programming language has its pros and cons,
and each application has different operational requirements.

One of the great virtues of the two-tier model is that the intermediate VM
code (e.g., Java’s bytecode) can be managed, for example, by programs that
test whether it contains malicious code, programs that monitor the code for
business process modeling, and so on. In general, for most applications, the
benefits of managed code justify the performance degradation caused by the
VM level. Yet for high-performance programs like operating systems and
embedded applications, the need to generate tight and efficient code
typically mandates using C/C++, compiled directly to machine language.

For compiler writers, an obvious advantage of using an explicit interim
VM language is that it simplifies the tasks of writing and maintaining
compilers. For example, the VM implementation developed in this chapter
frees the compiler from the significant tasks of handling the low-level
implementation of the function call-and-return protocol. In general, the
intermediate VM layer decouples the daunting challenge of building a high-
level-to-low-level compiler into two far simpler challenges: building a high-
level-to-VM compiler and building a VM-to-low-level translator. Since the
latter translator, also called the compiler’s back end, was already developed
in projects 7 and 8, we can be content that about half of the overall



compilation challenge has already been accomplished. The other half—
developing the compiler’s front end—will be taken up in chapters 10 and
11.

We end this chapter with a general observation about the virtue of
separating abstraction from implementation—an ongoing theme in Nand to
Tetris and a crucial systems-building principle that goes far beyond the
context of program compilation. Recall that VM functions can access their
memory segments using commands like push argument 2, pop local 1, and so
on while having no idea how these values are represented, saved, and
reinstated during run-time. The VM implementation takes care of all the
gory details. This complete separation of abstraction and implementation
implies that developers of compilers that generate VM code don’t have to
worry about how the code they generate will end up running; they have
enough problems of their own, as you will soon realize.

So cheer up! You are halfway through writing a two-tier compiler for a
high-level, object-based, Java-like programming language. The next chapter
is devoted to describing this language. This will set the stage for chapters
10 and 11, in which we’ll complete the compiler’s development. We begin
seeing Tetris bricks falling at the end of the tunnel.



 

9       High-Level Language

High thoughts need a high language.
—Aristophanes (427–386 B.C.)

The assembly and VM languages presented so far in this book are low-
level, meaning that they are intended for controlling machines, not for
developing applications. In this chapter we present a high-level language,
called Jack, designed to enable programmers to write high-level programs.
Jack is a simple object-based language. It has the basic features and flavor
of mainstream languages like Java and C++, with a simpler syntax and no
support for inheritance. Despite this simplicity, Jack is a general-purpose
language that can be used to create numerous applications. In particular, it
lends itself nicely to interactive games like Tetris, Snake, Pong, Space
Invaders, and similar classics.

The introduction of Jack marks the beginning of the end of our journey.
In chapters 10 and 11 we will write a compiler that translates Jack programs
into VM code, and in chapter 12 we will develop a simple operating system
for the Jack/Hack platform. This will complete the computer’s construction.
With that in mind, it’s important to say at the outset that the goal of this
chapter is not to turn you into a Jack programmer. Neither do we claim that
Jack is an important language outside the Nand to Tetris context. Rather, we
view Jack as a necessary scaffold for chapters 10–12, in which we will
build a compiler and an operating system that make Jack possible.

If you have any experience with a modern object-oriented programming
language, you will immediately feel at home with Jack. Therefore, we begin
the chapter with a few representative examples of Jack programs. All these
programs can be compiled by the Jack compiler supplied in nand2tetris/tools.



The VM code produced by the compiler can then be executed as is on any
VM implementation, including the supplied VM emulator. Alternatively,
you can translate the compiled VM code further into machine language,
using the VM translator built in chapters 7–8. The resulting assembly code
can then be executed on the supplied CPU emulator or translated further
into binary code and executed on the hardware platform built in chapters 1–
5.

Jack is a simple language, and this simplicity has a purpose. First, you
can learn (and unlearn) Jack in about one hour. Second, the Jack language
was carefully designed to lend itself nicely to common compilation
techniques. As a result, you can write an elegant Jack compiler with relative
ease, as we will do in chapters 10 and 11. In other words, the deliberately
simple structure of Jack is designed to help uncover the software
infrastructure of modern languages like Java and C#. Rather than taking the
compilers and run-time environments of these languages apart, we find it
more instructive to build a compiler and a run-time environment ourselves,
focusing on the most important ideas underlying their construction. This
will be done later, in the last three chapters of the book. Presently, let’s take
Jack out of the box.

9.1    Examples

Jack is mostly self-explanatory. Therefore, we defer the language
specification to the next section and start with examples. The first example
is the inevitable Hello World program. The second example illustrates
procedural programming and array processing. The third example illustrates
how abstract data types can be implemented in the Jack language. The
fourth example illustrates a linked list implementation using the language’s
object-handling capabilities.

Throughout the examples, we discuss briefly various object-oriented
idioms and commonly used data structures. We assume that the reader has a
basic familiarity with these subjects. If not, read on—you’ll manage.

Example 1: Hello World: The program shown in figure 9.1 illustrates
several basic Jack features. By convention, when we execute a compiled



Jack program, execution always starts with the Main.main function. Thus,
each Jack program must include at least one class, named Main, and this
class must include at least one function, named Main.main. This convention is
illustrated in figure 9.1.

Figure 9.1    Hello World, written in the Jack language.

Jack comes with a standard class library whose complete API is given in
appendix 6. This software library, also known as the Jack OS, extends the
basic language with various abstractions and services such as mathematical
functions, string processing, memory management, graphics, and
input/output functions. Two such OS functions are invoked by the Hello
World program, affecting the program’s output. The program also illustrates
the comment formats supported by Jack.

Example 2: Procedural programming and array handling: Jack features
typical statements for handling assignment and iteration. The program
shown in figure 9.2 illustrates these capabilities in the context of array
processing.



Figure 9.2    Typical procedural programming and simple array handling. Uses the services of the OS
classes Array, Keyboard, and Output.

Most high-level programming languages feature array declaration as part
of the basic syntax of the language. In Jack, we have opted for treating
arrays as instances of an Array class, which is part of the OS that extends the
basic language. This was done for pragmatic reasons, as it simplifies the
construction of Jack compilers.

Example 3: Abstract data types: Every programming language features a
fixed set of primitive data types, of which Jack has three: int, char, and
boolean. In object-based languages, programmers can introduce new types
by creating classes that represent abstract data types as needed. For
example, suppose we wish to endow Jack with the ability to handle rational
numbers like 2/3 and 314159/100000 without loss of precision. This can be
done by developing a standalone Jack class designed to create and
manipulate fraction objects of the form x/y, where x and y are integers. This
class can then provide a fraction abstraction to any Jack program that needs
to represent and manipulate rational numbers. We now turn to describe how



a Fraction class can be used and developed. This example illustrates typical
multi-class, object-based programming in Jack.

Using classes: Figure 9.3a lists a class skeleton (a set of method signatures)
that specifies some of the services that one can reasonably expect to get
from a fraction abstraction. Such a specification is often called an
Application Program Interface. The client code at the bottom of the figure
illustrates how this API can be used for creating and manipulating fraction
objects.

Figure 9.3a    Fraction API (top) and sample Jack class that uses it for creating and manipulating
Fraction objects.

Figure 9.3a illustrates an important software engineering principle: users
of an abstraction (like Fraction) don’t have to know anything about its
implementation. All they need is the class interface, also known as API.
The API informs what functionality the class offers and how to use this
functionality. That’s all the client needs to know.

Implementing classes: So far, we have seen only the client perspective of
the Fraction class—the view from which Fraction is used as a black box



abstraction. Figure 9.3b lists one possible implementation of this
abstraction.

Figure 9.3b    A Jack implementation of the Fraction abstraction.

The Fraction class illustrates several key features of object-based
programming in Jack. Fields specify object properties (also called member
variables). Constructors are subroutines that create new objects, and
methods are subroutines that operate on the current object (referred to using
the keyword this). Functions are class-level subroutines (also called static
methods) that operate on no particular object. The Fraction class also
demonstrates all the statement types available in the Jack language: let, do, if,
while, and return. The Fraction class is of course just one example of the
unlimited number of classes that can be created in Jack to support any
conceivable programming objective.

Example 4: Linked list implementation: The data structure list is defined
recursively as a value, followed by a list. The value null—the definition’s
base case—is also considered a list. Figure 9.4 shows a possible Jack
implementation of a list of integers. This example illustrates how Jack can
be used for realizing a major data structure, widely used in computer
science.



Figure 9.4    Linked list implementation in Jack (left and top right) and sample usage (bottom right).

The operating system: Jack programs make extensive use of the Jack
operating system, which will be discussed and developed in chapter 12. For
now, suffice it to say that Jack programs use the OS services abstractly,
without paying attention to their underlying implementation. Jack programs
can use the OS services directly—there is no need to include or import any
external code.

The OS consists of eight classes, summarized in figure 9.5 and
documented in appendix 6.



Figure 9.5    Operating system services (summary). The complete OS API is given in appendix 6.

9.2    The Jack Language Specification

This section can be read once and then used as a technical reference, to be
consulted as needed.

9.2.1    Syntactic Elements

A Jack program is a sequence of tokens, separated by an arbitrary amount
of white space and comments. Tokens can be symbols, reserved words,
constants, and identifiers, as listed in figure 9.6.



Figure 9.6    The syntax elements of the Jack language.

9.2.2    Program Structure

A Jack program is a collection of one or more classes stored in the same
folder. One class must be named Main, and this class must have a function
named main. The execution of a compiled Jack program always starts with
the Main.main function.

The basic programming unit in Jack is a class. Each class Xxx resides in a
separate file named Xxx.jack and is compiled separately. By convention,
class names begin with an uppercase letter. The file name must be identical



to the class name, including capitalization. The class declaration has the
following structure:

Each class declaration specifies a name through which the class services
can be globally accessed. Next comes a sequence of zero or more field
declarations and zero or more static variable declarations. Next comes a
sequence of one or more subroutine declarations, each defining a method, a
function, or a constructor.

Methods are designed to operate on the current object. Functions are
class-level static methods that are not associated with any particular object.
Constructors create and return new objects of the class type. A subroutine
declaration has the following structure:

where subroutine is either constructor, method, or function. Each subroutine has
a name through which it can be accessed and a type specifying the data type
of the value returned by the subroutine. If the subroutine is designed to
return no value, its type is declared void. The parameter-list is a comma-
separated list of <type identifier> pairs, for example, (int x, boolean sign,
Fraction g).

If the subroutine is a method or a function, its return type can be any of
the primitive data types supported by the language (int, char, or boolean), any
of the class types supplied by the standard class library (String or Array), or
any of the types realized by other classes in the program (e.g., Fraction or
List). If the subroutine is a constructor, it may have an arbitrary name, but its
type must be the name of the class to which it belongs. A class can have 0,



1, or more constructors. By convention, one of the constructors is named
new.

Following its interface specification, the subroutine declaration contains
a sequence of zero or more local variable declarations (var statements) and
then a sequence of one or more statements. Each subroutine must end with
the statement return expression. In the case of a void subroutine, when there
is nothing to return, the subroutine must end with the statement return
(which can be viewed as a shorthand of return void, where void is a constant
representing “nothing”). Constructors must terminate with the statement
return this. This action returns the memory address of the newly constructed
object, denoted this (Java constructors do the same, implicitly).

9.2.3    Data Types

The data type of a variable is either primitive (int, char, or boolean), or
ClassName, where ClassName is either String, Array, or the name of a class
residing in the program folder.

Primitive types: Jack features three primitive data types:

int: two’s-complement 16-bit integer

char: nonnegative, 16-bit integer

boolean: true or false

Each one of the three primitive data types int, char, and boolean is represented
internally as a 16-bit value. The language is weakly typed: a value of any
type can be assigned to a variable of any type without casting.

Arrays: Arrays are declared using the OS class Array. Array elements are
accessed using the typical arr[i] notation, where the index of the first
element is 0. A multidimensional array may be obtained by creating an
array of arrays. The array elements are not typed, and different elements in
the same array may have different types. The declaration of an array creates
a reference, while the array proper is constructed by executing the
constructor call Array.new (arrayLength). For an example of working with
arrays, see figure 9.2.



Object types: A Jack class that contains at least one method defines an
object type. As typical in object-oriented programming, object creation is a
two-step affair. Here is an example:

Strings: Strings are instances of the OS class String, which implements
strings as arrays of char values. The Jack compiler recognizes the syntax
"foo" and treats it as a String object. The contents of a String object can be
accessed using charAt(index) and other methods documented in the String
class API (see appendix 6). Here is an example:

The statement let  is equivalent to the statement let s =
String.new(11), followed by the eleven method calls do s.appendChar(72), …, do
s.appendChar(100), where the argument of appendChar is the character’s integer



code. In fact, that’s exactly how the compiler handles the translation of let
 Note that the single character idiom, for example, 'H', is not

supported by the Jack language. The only way to represent a character is to
use its integer character code or a charAt method call. The Hack character set
is documented in appendix 5.

Type conversions: Jack is weakly typed: the language specification does
not define what happens when a value of one type is assigned to a variable
of a different type. The decisions of whether to allow such casting
operations, and how to handle them, are left to specific Jack compilers. This
under-specification is intentional, allowing the construction of minimal
compilers that ignore typing issues. Having said that, all Jack compilers are
expected to support, and automatically perform, the following assignments.

A character value can be assigned to an integer variable, and vice versa,
according to the Jack character set specification (appendix 5). Example:

An integer can be assigned to a reference variable (of any object type), in
which case it is interpreted as a memory address. Example:

An object variable may be assigned to an Array variable, and vice versa.
This allows accessing the object fields as array elements, and vice versa.
Example:



9.2.4    Variables

Jack features four kinds of variables. Static variables are defined at the
class level and can be accessed by all the class subroutines. Field variables,
also defined at the class level, are used to represent the properties of
individual objects and can be accessed by all the class constructors and
methods. Local variables are used by subroutines for local computations,
and parameter variables represent the arguments that were passed to the
subroutine by the caller. Local and parameter values are created just before
the subroutine starts executing and are recycled when the subroutine
returns. Figure 9.7 gives the details. The scope of a variable is the region in
the program in which the variable is recognized.

Figure 9.7    Variable kinds in the Jack language. Throughout the table, subroutine refers to either a
function, a method, or a constructor.



Variable initialization: Static variables are not initialized, and it is up to
the programmer to write code that initializes them before using them. Field
variables are not initialized; it is expected that they will be initialized by the
class constructor, or constructors. Local variables are not initialized, and it
is up to the programmer to initialize them. Parameter variables are
initialized to the values of the arguments passed by the caller.

Variable visibility: Static and field variables cannot be accessed directly
from outside the class in which they are defined. They can be accessed only
through accessor and mutator methods, as facilitated by the class designer.

9.2.5    Statements

The Jack language features five statements, as seen in figure 9.8.

Figure 9.8    Statements in the Jack language.

9.2.6    Expressions



A Jack expression is one of the following:

A constant
A variable name in scope. The variable may be static, field, local, or
parameter
The this keyword, denoting the current object (cannot be used in functions)
An array element using the syntax arr[expression], where arr is a variable
name of type Array in scope
A subroutine call that returns a non-void type
An expression prefixed by one of the unary operators - or ~:
- expression: arithmetic negation
~ expression: Boolean negation (bitwise for integers)

An expression of the form expression op expression where op is one of the
following binary operators:
+ - * /:      integer arithmetic operators
& |:           Boolean And and Boolean Or (bitwise for integers) operators
< > =:      comparison operators

(expression): an expression in parentheses

Operator priority and order of evaluation: Operator priority is not
defined by the language, except that expressions in parentheses are
evaluated first. Thus the value of the expression  is unpredictable,
whereas  is guaranteed to evaluate to 14. The Jack compiler
supplied in Nand to Tetris (as well as the compiler that we’ll develop in
chapters 10–11) evaluates expressions left to right, so the expression 
evaluates to 20. Once again, if you wish to get the algebraically correct
result, use 

The need to use parentheses for enforcing operator priority makes Jack
expressions a bit cumbersome. This lack of formal operator priority is
intentional, though, as it simplifies the implementation of Jack compilers.
Different Jack compilers are welcome to specify an operator priority and
add it to the language documentation, if so desired.

9.2.7    Subroutine Calls



A subroutine call invokes a function, a constructor, or a method for its
effect, using the general syntax subroutineName (exp1, exp2, …, expn), where
each argument exp is an expression. The number and type of the arguments
must match those of the subroutine’s parameters, as specified in the
subroutine’s declaration. The parentheses must appear even if the argument
list is empty.

Subroutines can be called from the class in which they are defined, or
from other classes, according to the following syntax rules:

Function calls / Constructor calls:

className.functionName (exp1, exp2, … , expn)

className.constructorName (exp1, exp2, … , expn)

The className must always be specified, even if the function/constructor is
in the same class as the caller.

Method calls:

varName.methodName (exp1, exp2, … , expn)

Applies the method to the object referred to by varName.
methodName (exp1, exp2, … , expn)

Applies the method to the current object. Same as this.methodName
(exp1, exp2, … , expn).

Here are subroutine call examples:



9.2.8 Object Construction and Disposal

Object construction is done in two stages. First, a reference variable
(pointer to an object) is declared. To complete the object’s construction (if
so desired), the program must call a constructor from the object’s class.
Thus, a class that implements a type (e.g., Fraction) must feature at least one
constructor. Jack constructors may have arbitrary names; by convention,
one of them is named new.

Objects are constructed and assigned to variables using the idiom let
varName = className.constructorName (exp1, exp2, … , expn), for example,
let c = Circle.new (x,y,50). Constructors typically include code that initializes
the fields of the new object to the argument values passed by the caller.

When an object is no longer needed, it can be disposed, to free the
memory that it occupies. For example, suppose that the object that c points
at is no longer needed. The object can be deallocated from memory by
calling the OS function Memory.deAlloc (c). Since Jack has no garbage
collection, the best-practice advice is that every class that represents an
object must feature a dispose() method that properly encapsulates this de-
allocation. Figures 9.3 and 9.4 give examples. To avoid memory leaks, Jack
programmers are advised to dispose objects when they are no longer
needed.



9.3    Writing Jack Applications

Jack is a general-purpose language that can be implemented over different
hardware platforms. In Nand to Tetris we develop a Jack compiler over the
Hack platform, and thus it is natural to discuss Jack applications in the
Hack context.

Examples: Figure 9.9 shows screenshots of four sample Jack programs.
Generally speaking, the Jack/Hack platform lends itself nicely to simple
interactive games like Pong, Snake, Tetris, and similar classics. Your
projects/09/Square folder includes the full Jack code of a simple interactive
program that allows the user to move a square image on the screen using
the four keyboard arrow keys.

Figure 9.9    Screenshots of Jack applications running on the Hack computer.

Executing this program while reviewing its Jack source code is a good
way for learning how to use Jack to write interactive graphical applications.
Later in the chapter we describe how to compile and execute Jack programs
using the supplied tools.

Application design and implementation: Software development should
always rest on careful planning, especially when done over a spartan
hardware platform like the Hack computer. First, the program designer must



consider the physical limitations of the hardware and plan accordingly. To
start with, the dimensions of the computer’s screen limit the size of the
graphical images that the program can handle. Likewise, one must consider
the language’s range of input/output commands and the platform’s
execution speed to gain a realistic expectation of what can and cannot be
done.

The design process normally starts with a conceptual description of the
desired program’s behavior. In the case of graphical and interactive
programs, this may take the form of handwritten drawings of typical
screens. Next, one normally designs an object-based architecture of the
program. This entails the identification of classes, fields, and subroutines.
For example, if the program is supposed to allow the user to create square
objects and move them around the screen using the keyboard’s arrow keys,
it will make sense to design a Square class that encapsulates these operations
using methods like moveRight, moveLeft, moveUp, and moveDown, as well as a
constructor subroutine for creating squares and a disposer subroutine for
disposing them. In addition, it will make sense to create a SquareGame class
that carries out the user interaction and a Main class that gets things started.
Once the APIs of these classes are carefully specified, one can proceed to
implement, compile, and test them.

Compiling and executing Jack programs: All the .jack files comprising
the program must reside in the same folder. When you apply the Jack
compiler to the program folder, each source .jack file will be translated into a
corresponding .vm file, stored in the same program folder.

The simplest way to execute or debug a compiled Jack program is to load
the program folder into the VM emulator. The emulator will load all the
VM functions in all the .vm files in the folder, one after the other. The result
will be a (possibly long) stream of VM functions, listed in the VM
emulator’s code pane using their full fileName.functionName names. When
you instruct the emulator to execute the program, the emulator will start
executing the OS Sys.init function, which will then call the Main.main function
in your Jack program.

Alternatively, you can use a VM translator (like the one built in projects
7–8) for translating the compiled VM code, as well as the eight supplied
tools/OS/*.vm OS files, into a single .asm file written in the Hack machine



language. The assembly code can then be executed on the supplied CPU
emulator. Or, you can use an assembler (like the one built in project 6) for
translating the .asm file further into a binary code .hack file. Next, you can
load a Hack computer chip (like the one built in projects 1–5) into the
hardware simulator or use the built-in Computer chip, load the binary code
into the ROM chip, and execute it.

The operating system: Jack programs make extensive use of the
language’s standard class library, which we also refer to as the Operating
System. In project 12 you will develop the OS class library in Jack (like
Unix is written in C) and compile it using a Jack compiler. The compilation
will yield eight .vm files, comprising the OS implementation. If you put
these eight .vm files in your program folder, all the OS functions will
become accessible to the compiled VM code, since they belong to the same
code base (by virtue of belonging to the same folder).

Presently, though, there is no need to worry about the OS
implementation. The supplied VM emulator, which is a Java program,
features a built-in Java implementation of the Jack OS. When the VM code
loaded into the emulator calls an OS function, say Math.sqrt, one of two
things happens. If the OS function is found in the loaded code base, the VM
emulator executes it, just like executing any other VM function. If the OS
function is not found in the loaded code base, the emulator executes its
built-in implementation.

9.4    Project

Unlike the other projects in this book, this one does not require building a
hardware of software module. Rather, you have to pick some application of
your choice and build it in Jack over the Hack platform.

Objective: The “hidden agenda” of this project is to get acquainted with the
Jack language, for two purposes: writing the Jack compiler in projects 10
and 11, and writing the Jack operating system in project 12.



Contract: Adopt or invent an application idea like a simple computer game
or some interactive program. Then design and build the application.

Resources: You will need the supplied tools/JackCompiler for translating your
program into a set of .vm files, and the supplied tools/VMEmulator for running
and testing the compiled code.

Compiling and Running a Jack Program

0.  Create a folder for your program. Let’s call it the program folder.
1.  Write your Jack program—a set of one or more Jack classes—each

stored in a separate ClassName.jack text file. Put all these .jack files in the
program folder.

2.  Compile the program folder using the supplied Jack compiler. This will
cause the compiler to translate all the .jack classes found in the folder into
corresponding .vm files. If a compilation error is reported, debug the
program and recompile until no error messages are issued.

3.  At this point the program folder should contain your source .jack files
along with the compiled .vm files. To test the compiled program, load the
program folder into the supplied VM emulator, and run the loaded code.
In case of run-time errors or undesired program behavior, fix the relevant
file and go back to step 2.

Program examples: Your nand2tetris/project/09 folder includes the source
code of a complete, three-class interactive Jack program (Square). It also
includes the source code of the Jack programs discussed in this chapter.

Bitmap editor: If you develop a program that needs high-speed graphics, it
is best to design sprites for rendering the key graphical elements of the
program. For example, the output of the Sokoban application depicted in
figure 9.9 consists of several repeating sprites. If you wish to design such
sprites and write them directly into the screen memory map (bypassing the
services of the OS Screen class, which may be too slow), you will find the
projects/09/BitmapEditor tool useful.

A web-based version of project 9 is available at www.nand2tetris.org.

http://www.nand2tetris.org/


9.5    Perspective

Jack is an object-based language, meaning that it supports objects and
classes but not inheritance. In this respect it is positioned somewhere
between procedural languages like Pascal or C and object-oriented
languages like Java or C++. Jack is certainly more simple-minded than any
of these industrial strength programming languages. However, its basic
syntax and semantics are similar to those of modern languages.

Some features of the Jack language leave much to be desired. For
example, its primitive type system is, well, rather primitive. Moreover, it is
a weakly typed language, meaning that type conformity in assignments and
operations is not strictly enforced. Also, you may wonder why the Jack
syntax includes clunky keywords like do and let, why every subroutine must
end with a return statement, why the language does not enforce operator
priority, and so on—you may add your favorite complaint to the list.

All these somewhat tedious idiosyncrasies were introduced into Jack with
one purpose: allowing the development of simple and minimal Jack
compilers, as we will do in the next two chapters. For example, the parsing
of a statement (in any language) is significantly easier if the first token of
the statement reveals which statement we’re in. That’s why Jack uses a let
keyword for prefixing assignment statements. Thus, although Jack’s
simplicity may be a nuisance when writing Jack applications, you’ll be
grateful for this simplicity when writing the Jack compiler, as we’ll do in
the next two chapters.

Most modern languages are deployed with a set of standard classes, and
so is Jack. Taken together, these classes can be viewed as a portable,
language-oriented operating system. Yet unlike the standard libraries of
industrial-strength languages, which feature numerous classes, the Jack OS
provides a minimal set of services, which is nonetheless sufficient for
developing simple interactive applications.

Clearly, it would be nice to extend the Jack OS to provide concurrency
for supporting multi-threading, a file system for permanent storage, sockets
for communications, and so on. Although all these services can be added to
the OS, readers will perhaps want to hone their programming skills
elsewhere. After all, we don’t expect Jack to be part of your life beyond



Nand to Tetris. Therefore, it is best to view the Jack/Hack platform as a
given environment and make the best out of it. That’s precisely what
programmers do when they write software for embedded devices and
dedicated processors that operate in restricted environments. Instead of
viewing the constraints imposed by the host platform as a problem,
professionals view it as an opportunity to display their resourcefulness and
ingenuity. That’s what you are expected to do in project 9.



 

10     Compiler I: Syntax Analysis

Neither can embellishments of language be found without arrangement and expression of thoughts,
nor can thoughts be made to shine without the light of language.

—Cicero (106–43 B.C.)

The previous chapter introduced Jack—a simple, object-based
programming language with a Java-like syntax. In this chapter we start
building a compiler for the Jack language. A compiler is a program that
translates programs from a source language into a target language. The
translation process, known as compilation, is conceptually based on two
distinct tasks. First, we have to understand the syntax of the source program
and, from it, uncover the program’s semantics. For example, the parsing of
the code can reveal that the program seeks to declare an array or manipulate
an object. Once we know the semantics, we can reexpress it using the
syntax of the target language. The first task, typically called syntax analysis,
is described in this chapter; the second task—code generation—is taken up
in the next chapter.

How can we tell that a compiler is capable of “understanding” programs?
Well, as long as the code generated by the compiler is doing what it’s
supposed to be doing, we can optimistically assume that the compiler is
operating properly. Yet in this chapter we build only the syntax analyzer
module of the compiler, with no code generation capabilities. If we wish to
unit-test the syntax analyzer in isolation, we have to contrive a way to
demonstrate that it understands the source program. Our solution is to have
the syntax analyzer output an XML file whose marked-up content reflects
the syntactic structure of the source code. By inspecting the generated XML



output, we’ll be able to ascertain that the analyzer is parsing input programs
correctly.

Writing a compiler from the ground up is an exploit that brings to bear
several fundamental topics in computer science. It requires the use of
parsing and language translation techniques, application of classical data
structures like trees and hash tables, and use of recursive compilation
algorithms. For all these reasons, writing a compiler is also a challenging
feat. However, by splitting the compiler’s construction into two separate
projects (actually four, counting chapters 7 and 8 as well) and by allowing
the modular development and unit-testing of each part in isolation, we turn
the compiler’s development into a manageable and self-contained activity.

Why should you go through the trouble of building a compiler? Aside
from the benefits of feeling competent and accomplished, a hands-on grasp
of compilation internals will turn you into a better high-level programmer.
Further, the same rules and grammars used for describing programming
languages are also used in diverse fields like computer graphics,
communications and networks, bioinformatics, machine learning, data
science, and blockchain technology. And, the vibrant area of natural
language processing—the enabling science and practice behind intelligent
chatbots, robotic personal assistants, language translators, and many
artificial intelligence applications—requires abilities for analyzing texts and
synthesizing semantics. Thus, while most programmers don’t develop
compilers in their regular jobs, many programmers have to parse and
manipulate texts and data sets of complex and varying structures. These
tasks can be done efficiently and elegantly using the algorithms and
techniques described in this chapter.

We start with a Background section that surveys the minimal set of
concepts necessary for building a syntax analyzer: lexical analysis, context-
free grammars, parse trees, and recursive descent parsing algorithms. This
sets the stage for a Specification section that presents the Jack language
grammar and the output that a Jack analyzer is expected to generate. The
Implementation section proposes a software architecture for constructing a
Jack analyzer, along with a suggested API. As usual, the Project section
gives step-by-step instructions and test programs for building a syntax
analyzer. In the next chapter, this analyzer will be extended into a full-scale
compiler.



10.1    Background

Compilation consists of two main stages: syntax analysis and code
generation. The syntax analysis stage is usually divided further into two
substages: tokenizing, the grouping of input characters into language atoms
called tokens, and parsing, the grouping of tokens into structured statements
that have a meaning.

The tokenizing and parsing tasks are completely independent of the target
language into which we seek to translate the source input. Since in this
chapter we don’t deal with code generation, we have chosen to have the
syntax analyzer output the parsed structure of the input program as an XML
file. This decision has two benefits. First, the output file can be readily
inspected, demonstrating that the syntax analyzer is parsing source
programs correctly. Second, the requirement to output this file explicitly
forces us to write the syntax analyzer in an architecture that can be later
morphed into a full-scale compiler. Indeed, as figure 10.1 shows, in the next
chapter we will extend the syntax analyzer developed in this chapter into a
full-scale compilation engine capable of generating executable VM code
rather than passive XML code.

Figure 10.1    Staged development plan of the Jack compiler.

In this chapter we focus only on the syntax analyzer module of the
compiler, whose job is understanding the structure of a program. This
notion needs explanation. When humans read the source code of a computer
program, they can immediately relate to the program’s structure. They can



do so since they have a mental image of the language’s grammar. In
particular, they sense which program constructs are valid, and which are
not. Using this grammatical insight, humans can identify where classes and
methods begin and end, what are declarations, what are statements, what
are expressions and how they are built, and so on. In order to recognize
these language constructs, which may well be nested, humans recursively
map them on the range of textual patterns accepted by the language
grammar.

Syntax analyzers can be developed to perform similarly by building them
according to a given grammar—the set of rules that define the syntax of a
programming language. To understand—parse—a given program means to
determine the exact correspondence between the program’s text and the
grammar’s rules. To do so, we must first transform the program’s text into a
list of tokens, as we now turn to describe.

10.1.1    Lexical Analysis

Each programming language specification includes the types of tokens, or
words, that the language recognizes. In the Jack language, tokens fall into
five categories: keywords (like class and while), symbols  integer
constants (like 17 and 314), string constants (like "FAQ" and "Frequently Asked
Questions"), and identifiers, which are the textual labels used for naming
variables, classes, and subroutines. Taken together, the tokens defined by
these lexical categories can be referred to as the language lexicon.

In its plainest form, a computer program is a stream of characters stored
in a text file. The first step in analyzing the program’s syntax is grouping
the characters into tokens, as defined by the language lexicon, while
ignoring white space and comments. This task is called lexical analysis,
scanning, or tokenizing—all meaning exactly the same thing.

Once a program has been tokenized, the tokens, rather than the
characters, are viewed as its basic atoms. Thus, the token stream becomes
the compiler’s main input.

Figure 10.2 presents the Jack language lexicon and illustrates the
tokenization of a typical code segment. This version of the tokenizer
outputs the tokens as well as their lexical classifications.



Figure 10.2    Definition of the Jack lexicon, and lexical analysis of a sample input.

Tokenizing is a simple and important task. Given a language lexicon, it is
not difficult to write a program that turns any given character stream into a
stream of tokens. This capability provides the first stepping stone toward
developing a syntax analyzer.

10.1.2    Grammars

Once we develop the ability to access a given text as a stream of tokens, or
words, we can proceed to attempt grouping the words into valid sentences.
For example, when we hear that “Bob got the job” we nod approvingly,
while inputs like “Got job the Bob” or “Job Bob the got” sound weird. We
perform these parsing tasks without thinking about them, since our brains
have been trained to map sequences of words on patterns that are either
accepted or rejected by the English grammar. The grammars of
programming languages are much simpler than those of natural languages.
See figure 10.3 for an example.



Figure 10.3    A subset of the Jack language grammar, and Jack code segments that are either
accepted or rejected by the grammar.

A grammar is written in a meta-language: a language describing a
language. Compilation theory is rife with formalisms for specifying, and
reasoning about, grammars, languages, and meta-languages. Some of these
formalisms are, well, painfully formal. Trying to keep things simple, in
Nand to Tetris we view a grammar as a set of rules. Each rule consists of a
left side and a right side. The left side specifies the rule’s name, which is
not part of the language. Rather, it is made up by the person who describes
the grammar, and thus it is not terribly important. For example, if we
replace a rule’s name with another name throughout the grammar, the
grammar will be just as valid (though it may be less readable).

The rule’s right side describes the lingual pattern that the rule specifies.
This pattern is a left-to-right sequence consisting of three building blocks:
terminals, nonterminals, and qualifiers. Terminals are tokens, nonterminals
are names of other rules, and qualifiers are represented by the five symbols
|, *, ?, (, and). Terminal elements, like 'if', are specified in bold font and
enclosed within single quotation marks; nonterminal elements, like
expression, are specified using italic font; qualifiers are specified using



regular font. For example, the rule ifStatement: 'if' '(' expression ')' '{'
statements '}' stipulates that every valid instance of an ifStatement must
begin with the token if, followed by the token (, followed by a valid instance
of an expression (defined elsewhere in the grammar), followed by the
token), followed by the token {, followed by a valid instance of statements
(defined elsewhere in the grammar), followed by the token}.

When there is more than one way to parse a pattern, we use the qualifier |
to list the alternatives. For example, the rule statement: letStatement |
ifStatement | whileStatement stipulates that a statement can be either a
letStatement, an ifStatement, or a whileStatement.

The qualifier * is used to denote “0, 1, or more times.” For example, the
rule statements: statement* stipulates that statements stands for 0, 1, or
more instances of statement. In a similar vein, the qualifier ? is used to
denote “0 or 1 times.” For example, the rule expression: term (op term)?
stipulates that expression is a term that may or may not be followed by the
sequence op term. This implies that, for example, x is an expression, and so
are  and  The qualifiers (and) are used for grouping grammar
elements. For example, (op term) stipulates that, in the context of this rule,
op followed by term should be treated as one grammatical element.

10.1.3    Parsing

Grammars are inherently recursive. Just like the sentence “Bob got the job
that Alice offered” is considered valid, so is the statement if

 How can we tell that this input is accepted by the
grammar? After getting the first token and realizing that we have an if
pattern, we focus on the rule ifStatement: 'if' '(' expression ')' '{' statements '}'.
The rule informs that following the token if there ought to be the token (,
followed by an expression, followed by the token). And indeed, these
requirements are satisfied by the input element  Back to the rule, we
see that we now have to anticipate the token {, followed by statements,
followed by the token}. Now, statements is defined as 0 or more instances
of statement, and statement, in turn, is either a letStatement, an ifStatement,
or a whileStatement. This expectation is met by the inner input element if

 which is an ifStatement.



We see that the grammar of a programming language can be used to
ascertain, without ambiguity, whether given inputs are accepted or rejected.1

As a side effect of this parsing act, the parser produces an exact
correspondence between the given input, on the one hand, and the syntactic
patterns admitted by the grammar rules, on the other. The correspondence
can be represented by a data structure called a parse tree, also called a
derivation tree, like the one shown in figure 10.4a. If such a tree can be
constructed, the parser renders the input valid; otherwise, it can report that
the input contains syntax errors.

Figure 10.4a    Parse tree of a typical code segment. The parsing process is driven by the grammar
rules.

How can we represent parse trees textually? In Nand to Tetris, we
decided to have the parser output an XML file whose marked-up format
reflects the tree structure. By inspecting this XML output file, we can
ascertain that the parser is parsing the input correctly. See figure 10.4b for
an example.



Figure 10.4b    Same parse tree, in XML.

10.1.4    Parser

A parser is an agent that operates according to a given grammar. The parser
accepts as input a stream of tokens and attempts to produce as output the
parse tree associated with the given input. In our case, the input is expected
to be structured according to the Jack grammar, and the output is written in
XML. Note, though, that the parsing techniques that we now turn to
describe are applicable to handling any programming language and
structured file format.



There are several algorithms for constructing parse trees. The top-down
approach, also known as recursive descent parsing, attempts to parse the
tokenized input recursively, using the nested structures admitted by the
language grammar. Such an algorithm can be implemented as follows. For
every nontrivial rule in the grammar, we equip the parser program with a
routine designed to parse the input according to that rule. For example, the
grammar listed in figure 10.3 can be implemented using a set of routines
named compileStatement, compileStatements, compileLet, compileIf, …,
compileExpression, and so on. We use the action verb compile rather than
parse, since in the next chapter we will extend this logic into a full-scale
compilation engine.

The parsing logic of each compilexxx routine should follow the syntactic
pattern specified by the right side of the xxx rule. For example, let us focus
on the rule whileStatement: 'while' '(' expression ')' '{' statements '}'. According
to our scheme, this rule will be implemented by a parsing routine named
compileWhile. This routine should realize the left-to-right derivation logic
specified by the pattern 'while' '(' expression ')' '{' statements '}'. Here is one
way to implement this logic, using pseudocode:

This parsing process will continue until the expression and statements parts
of the while statement have been fully parsed. Of course the statements part
may well contain a lower-level while statement, in which case the parsing
will continue recursively.



The example just shown illustrates the implementation of a relatively
simple rule, whose derivation logic entails a simple case of straight-line
parsing. In general, grammar rules can be more complex. For example,
consider the following rule, which specifies the definition of class-level
static and instance-level field variables in the Jack language:

This rule presents two parsing challenges that go beyond straight-line
parsing. First, the rule admits either static or field as its first token. Second,
the rule admits multiple variable declarations. To address both issues, the
implementation of the corresponding compileClassVarDec routine can (i)
handle the processing of the first token (static or field) directly, without
calling a helper routine, and (ii) use a loop for handling all the variable
declarations that the input contains. Generally speaking, different grammar
rules entail slightly different parsing implementations. At the same time,
they all follow the same contract: each compilexxx routine should get from
the input, and handle, all the tokens that make up xxx, advance the tokenizer
exactly beyond these tokens, and output the parse tree of xxx.

Recursive parsing algorithms are simple and elegant. If the language is
simple, a single token lookahead is all that it takes to know which parsing
rule to invoke next. For example, if the current token is let, we know that we
have a letStatement; if the current token is while, we know that we have a
whileStatement, and so on. Indeed, in the simple grammar shown in figure
10.3, looking ahead one token suffices to resolve, without ambiguity, which
rule to use next. Grammars that have this lingual property are called LL (1).
These grammars can be handled simply and elegantly by recursive descent
algorithms, without backtracking.

The term LL comes from the observation that the grammar parses the
input from left to right, performing leftmost derivation of the input. The (1)



parameter informs that looking ahead 1 token is all that it takes to know
which parsing rule to invoke next. If that token does not suffice to resolve
which rule to use, we can look ahead one more token. If this lookahead
settles the ambiguity, the parser is said to be LL (2). And if not, we can look
ahead yet another token, and so on. Clearly, as we need to look ahead
further and further down the token stream, things become complicated,
requiring a sophisticated parser.

The complete Jack language grammar, which we now turn to present, is
LL (1), barring one exception that can be easily handled. Thus, Jack lends
itself nicely to a recursive descent parser, which is the centerpiece of project
10.

10.2    Specification

This section consists of two parts. First, we specify the Jack language’s
grammar. Next, we specify a syntax analyzer designed to parse programs
according to this grammar.

10.2.1    The Jack Language Grammar

The functional specification of the Jack language presented in chapter 9 was
aimed at Jack programmers; we now give a formal specification of the Jack
language, aimed at developers of Jack compilers. The language
specification, or grammar, uses the following notation:

With this notation in mind, the complete Jack grammar is specified in figure
10.5.



Figure 10.5    The Jack grammar.

10.2.2    A Syntax Analyzer for the Jack Language

A syntax analyzer is a program that performs both tokenizing and parsing.
In Nand to Tetris, the main purpose of the syntax analyzer is to process a
Jack program and understand its syntactic structure according to the Jack
grammar. By understanding we mean that the syntax analyzer must know,
at each point in the parsing process, the structural identity of the program
element that it is currently handling, that is, whether it is an expression, a
statement, a variable name, and so on. The syntax analyzer must possess
this syntactic knowledge in a complete recursive sense. Without it, it will be



impossible to move on to code generation—the ultimate goal of the
compilation process.

Usage: The syntax analyzer accepts a single command-line argument, as
follows,

prompt> JackAnalyzer source

where source is either a file name of the form Xxx.jack (the extension is
mandatory) or the name of a folder (in which case there is no extension)
containing one or more .jack files. The file/folder name may contain a file
path. If no path is specified, the analyzer operates on the current folder. For
each Xxx.jack file, the parser creates an output file Xxx.xml and writes the
parsed output into it. The output file is created in the same folder as that of
the input. If there is a file by this name in the folder, it will be overwritten.

Input: An Xxx.jack file is a stream of characters. If the file represents a valid
program, it can be tokenized into a stream of valid tokens, as specified by
the Jack lexicon. The tokens may be separated by an arbitrary number of
space characters, newline characters, and comments, which are ignored.
There are three possible comment formats: /* comment until closing */, /**
API comment until closing */, and // comment until the line’s end.

Output: The syntax analyzer emits an XML description of the input file, as
follows. For each terminal element (token) of type xxx appearing in the
input, the syntax analyzer prints the marked-up output <xxx> token </xxx>,
where xxx is one of the tags keyword, symbol, integerConstant, stringConstant, or
identifier, representing one of the five token types recognized by the Jack
language. Whenever a nonterminal language element xxx is detected, the
syntax analyzer handles it using the following pseudocode:



where xxx is one of the following (and only the following) tags: class,
classVarDec, subroutineDec, parameterList, subroutineBody, varDec, statements,
letStatement, ifStatement, whileStatement, doStatement, returnStatement, expression,
term, expressionList.

To simplify things, the following Jack grammar rules are not accounted
for explicitly in the XML output: type, className, subroutineName,
varName, statement, subroutineCall. We will explain this further in the next
section, when we discuss the architecture of our compilation engine.

10.3    Implementation

The previous section specified what a syntax analyzer should do, with few
implementation insights. This section describes how to build such an
analyzer. Our proposed implementation is based on three modules:

JackAnalyzer: main program that sets up and invokes the other modules
JackTokenizer: tokenizer
CompilationEngine: recursive top-down parser

In the next chapter we will extend this software architecture with two
additional modules that handle the language’s semantics: a symbol table and
a VM code writer. This will complete the construction of a full-scale
compiler for the Jack language. Since the main module that drives the
parsing process in this project will end up driving the overall compilation
process as well, we name it CompilationEngine.

The JackTokenizer

This module ignores all comments and white space in the input stream and
enables accessing the input one token at a time. Also, it parses and provides
the type of each token, as defined by the Jack grammar.



The CompilationEngine

The CompilationEngine is the backbone module of both the syntax analyzer
described in this chapter and the full-scale compiler described in the next
chapter. In the syntax analyzer, the compilation engine emits a structured



representation of the input source code wrapped in XML tags. In the
compiler, the compilation engine will instead emit executable VM code. In
both versions, the parsing logic and API presented below are exactly the
same.

The compilation engine gets its input from a JackTokenizer and emits its
output to an output file. The output is generated by a series of compilexxx
routines, each designed to handle the compilation of a specific Jack
language construct xxx. The contract between these routines is that each
compilexxx routine should get from the input, and handle, all the tokens that
make up xxx, advance the tokenizer exactly beyond these tokens, and output
the parsing of xxx. As a rule, each compilexxx routine is called only if the
current token is xxx.

Grammar rules that have no corresponding compilexxx routines: type,
className, subroutineName, varName, statement, subroutineCall. We
introduced these rules to make the Jack grammar more structured. As it
turns out, the parsing logic of these rules is better handled by the routines
that implement the rules that refer to them. For example, instead of writing
a compileType routine, whenever type is mentioned in some rule xxx, the
parsing of the possible types should be done directly by the compile xxx
routine.

Token lookahead: Jack is almost an LL(1) language: the current token is
sufficient for determining which CompilationEngine routine to call next. The
only exception occurs when parsing a term, which occurs only when
parsing an expression. To illustrate, consider the contrived yet valid
expression This expression
is made up of six terms: the variable y, the array element arr[5], the method
call on the p object p.get (row), the method call on the this object count (), the
call to the function (static method) Math.sqrt(dist), and the constant 2.

Suppose that we are parsing this expression and the current token is one
of the identifiers y, arr, p, count, or Math. In each one of these cases, we know
that we have a term that begins with an identifier, but we don’t know which
parsing possibility to follow next. That’s the bad news; the good news is
that a single lookahead to the next token is all that we need to settle the
dilemma.



The need for this irregular lookahead operation occurs in the
CompilationEngine twice: when parsing a term, which happens only when
parsing an expression, and when parsing a subroutineCall. Now, an
inspection of the Jack grammar shows that subroutineCall appears in two
places only: either in a do subroutineCall statement or in a term.

With that in mind, we propose parsing do subroutineCall statements as if
their syntax were do expression. This pragmatic recommendation obviates
the need to write the irregular lookahead code twice. It also implies that the
parsing of subroutineCall can now be handled directly by the compileTerm
routine. In short, we’ve localized the need to write the irregular token
lookahead code to one routine only, compileTerm, and we’ve eliminated the
need for a compileSubroutineCall routine.





The compileExpressionList routine: returns the number of expressions in the
list. The return value is necessary for generating VM code, as we’ll see
when we’ll complete the compiler’s development in project 11. In this
project we generate no VM code; therefore the returned value is not used
and can be ignored by routines that call compileExpressionList.

The JackAnalyzer

This is the main program that drives the overall syntax analysis process,
using the services of a JackTokenizer and a CompilationEngine. For each source
Xxx.jack file, the analyzer

1. creates a JackTokenizer from the Xxx.jack input file;
2. creates an output file named Xxx.xml; and
3. uses the JackTokenizer and the CompilationEngine to parse the input file and

write the parsed code to the output file.

We provide no API for this module, inviting you to implement it as you see
fit. Remember that the first routine that must be called when compiling a
.jack file is compileClass.

10.4    Project

Objective: Build a syntax analyzer that parses Jack programs according to
the Jack grammar. The analyzer’s output should be written in XML, as
specified in section 10.2.2.

This version of the syntax analyzer assumes that the source Jack code is
error-free. Error checking, reporting, and handling can be added to later
versions of the analyzer but are not part of project 10.

Resources: The main tool in this project is the programming language that
you will use for implementing the syntax analyzer. You will also need the
supplied TextComparer utility. This program allows comparing files while
ignoring white space. This will help you compare the output files generated



by your analyzer with the supplied compare files. You may also want to
inspect these files using an XML viewer. Any standard web browser should
do the job—just use your browser’s “open file” option to open the XML file
that you wish to inspect.

Contract: Write a syntax analyzer for the Jack language, and test it on the
supplied test files. The XML files produced by your analyzer should be
identical to the supplied compare files, ignoring white space.

Test files: We provide several .jack files for testing purposes. The
projects/10/Square program is a three-class app that enables moving a black
square around the screen using the keyboard’s arrow keys. The
projects/10/ArrayTest program is a single-class app that computes the average
of a user-supplied sequence of integers using array processing. Both
programs were discussed in chapter 9, so they should be familiar. Note,
though, that we made some harmless changes to the original code to make
sure that the syntax analyzer will be fully tested on all aspects of the Jack
language. For example, we’ve added a static variable to
projects/10/Square/Main.jack, as well as a function named more, which are never
used or called. These changes allow testing how the analyzer handles
language elements that don’t appear in the original Square and ArrayTest files,
like static variables, else, and unary operators.

Development plan: We suggest developing and unit-testing the analyzer in
four stages:

First, write and test a Jack tokenizer.
Next, write and test a basic compilation engine that handles all the
features of the Jack language, except for expressions and array-oriented
statements.
Next, extend your compilation engine to handle expressions.
Finally, extend your compilation engine to handle array-oriented
statements.

We provide input .jack files and compare .xml files for unit-testing each one
of the four stages, as we now turn to describe.



10.4.1    Tokenizer

Implement the JackTokenizer module specified in section 10.3. Test your
implementation by writing a basic version of the JackAnalyzer, defined as
follows. The analyzer, which is the main program, is invoked using the
command JackAnalyzer source, where source is either a file name of the form
Xxx.jack (the extension is mandatory) or a folder name (in which case there
is no extension). In the latter case, the folder contains one or more .jack files
and, possibly, other files as well. The file/folder name may include a file
path. If no path is specified, the analyzer operates on the current folder.

The analyzer handles each file separately. In particular, for each Xxx.jack
file, the analyzer constructs a JackTokenizer for handling the input and an
output file for writing the output. In this first version of the analyzer, the
output file is named XxxT.xml (where T stands for tokenized output). The
analyzer then enters a loop to advance and handle all the tokens in the input
file, one token at a time, using the JackTokenizer methods. Each token should
be printed in a separate line, as <tokenType> token </tokenType>, where
tokenType is one of five possible XML tags coding the token’s type. Here is
an example:



Note that in the case of string constants, the program ignores the double
quotation marks. This requirement is by design.

The generated output has two trivial technicalities dictated by XML
conventions. First, an XML file must be enclosed within some begin and
end tags; this convention is satisfied by the <tokens> and </tokens> tags.
Second, four of the symbols used in the Jack language (<, >, ", &) are also
used for XML markup; thus they cannot appear as data in XML files.
Following convention, the analyzer represents these symbols as &lt;, &gt;,
&quot;, and &amp;, respectively. For example, when the parser encounters the
< symbol in the input file, it outputs the line <symbol> &lt; </symbol>. This so-
called escape sequence is rendered by XML viewers as <symbol> <
</symbol>, which is what we want.

Testing Guidelines

Start by applying your JackAnalyzer to one of the supplied .jack files, and
verify that it operates correctly on a single input file.
Next, apply your JackAnalyzer to the Square folder, containing the files
Main.jack, Square.jack, and SquareGame.jack, and to the TestArray folder,
containing the file Main.jack.
Use the supplied TextComparer utility to compare the output files generated
by your JackAnalyzer to the supplied .xml compare files. For example,
compare the generated file SquareT.xml to the supplied compare file
SquareT.xml.
Since the generated and compare files have the same names, we suggest
putting them in separate folders.

10.4.2    Compilation Engine

The next version of your syntax analyzer should be capable of parsing
every element of the Jack language, except for expressions and array-
oriented commands. To that end, implement the CompilationEngine module
specified in section 10.3, except for the routines that handle expressions and
arrays. Test the implementation by using your Jack analyzer, as follows.

For each Xxx.jack file, the analyzer constructs a JackTokenizer for handling
the input and an output file for writing the output, named Xxx.xml. The



analyzer then calls the compileClass routine of the CompilationEngine. From this
point onward, the CompilationEngine routines should call each other
recursively, emitting XML output similar to the one shown in figure 10.4b.

Unit-test this version of your JackAnalyzer by applying it to the folder
ExpressionlessSquare. This folder contains versions of the files Square.jack,
SquareGame.jack, and Main.jack, in which each expression in the original code
has been replaced with a single identifier (a variable name in scope). For
example:

Note that the replacement of expressions with variables results in
nonsensical code. This is fine, since the program semantics is irrelevant to
project 10. The nonsensical code is syntactically correct, and that’s all that
matters for testing the parser. Note also that the original and expressionless
files have the same names but are located in separate folders.

Use the supplied TextComparer utility to compare the output files generated
by your JackAnalyzer with the supplied .xml compare files.

Next, complete the CompilationEngine routines that handle expressions, and
test them by applying your JackAnalyzer to the Square folder. Finally,
complete the routines that handle arrays, and test them by applying your
JackAnalyzer to the ArrayTest folder.

A web-based version of project 10 is available at www.nand2tetris.org.

10.5    Perspective

http://www.nand2tetris.org/


Although it is convenient to describe the structure of computer programs
using parse trees and XML files, it’s important to understand that compilers
don’t necessarily have to maintain such data structures explicitly. For
example, the parsing algorithm described in this chapter parses the input as
it reads it and does not keep the entire input program in memory. There are
essentially two types of strategies for doing such parsing. The simpler
strategy works top-down, and that is the one presented in this chapter. The
more advanced parsing algorithms, which work bottom-up, were not
described here since they require elaboration of more compilation theory.

Indeed, in this chapter we have sidestepped the formal language theory
studied in typical compilation courses. Also, we have chosen a simple
syntax for the Jack language—a syntax that can be easily compiled using
recursive descent techniques. For example, the Jack grammar does not
mandate the usual operator precedence in algebraic expressions evaluation,
like multiplication before addition. This enabled us to avoid parsing
algorithms that are more powerful, but also more intricate, than the elegant
top-down parsing techniques presented in this chapter.

Every programmer experiences the disgraceful handling of compilation
errors, which is typical of many compilers. As it turns out, error diagnostics
and reporting are a challenging problem. In many cases, the impact of an
error is detected several or many lines of code after the error was made.
Therefore, error reporting is sometimes cryptic and unfriendly. Indeed, one
aspect in which compilers vary greatly is their ability to diagnose, and help
debug, errors. To do so, compilers persist parts of the parse tree in memory
and extend the tree with annotations that help pinpoint the source of errors
and backtrack the diagnostic process, as needed. In Nand to Tetris we
bypass all these extensions, assuming that the source files that the compiler
handles are error-free.

Another topic that we hardly mentioned is how the syntax and semantics
of programming languages are studied in computer and cognitive science.
There is a rich theory of formal and natural languages that discusses
properties of classes of languages, as well as meta-languages and
formalisms for specifying them. This is also the place where computer
science meets the study of human languages, leading to the vibrant areas of
research and practice known as computational linguistics and natural
language processing.



Finally, it is worth mentioning that syntax analyzers are typically not
standalone programs and are rarely written from scratch. Instead,
programmers usually build tokenizers and parsers using a variety of
compiler generator tools like LEX (for LEXical analysis) and YACC (for
Yet Another Compiler Compiler). These utilities receive as input a context-
free grammar and produce as output syntax analysis code capable of
tokenizing and parsing programs written in that grammar. The generated
code can then be customized to fit the specific needs of the compiler writer.
Following the “show me” spirit of Nand to Tetris, though, we have chosen
not to use such black boxes in the implementation of our compiler, but
rather build everything from the ground up.

1.  And here lies a crucial difference between programming languages and natural languages. In
natural languages, we can say things like “Whoever saves one life, saves the world entire.” In the
English language, putting the adjective after the noun is grammatically incorrect. Yet, in this
particular case, it sounds perfectly acceptable. Unlike programming languages, natural languages
mandate a poetic license to break grammar rules, so long as the writer knows what he or she is doing.
This freedom of expression makes natural languages infinitely rich.



 

11     Compiler II: Code Generation

When I am working on a problem, I never think about beauty. But when I have finished, if the
solution is not beautiful, I know it is wrong.

—R. Buckminster Fuller (1895–1993)

Most programmers take compilers for granted. But if you stop to think
about it, the ability to translate a high-level program into binary code is
almost like magic. In Nand to Tetris we devote four chapters (7–11) for
demystifying this magic. Our hands-on methodology is based on
developing a compiler for Jack—a simple, modern object-based language.
As with Java and C#, the overall Jack compiler is based on two tiers: a
virtual machine (VM) back end that translates VM commands into machine
language and a front end compiler that translates Jack programs into VM
code. Building a compiler is a challenging undertaking, so we divide it
further into two conceptual modules: a syntax analyzer, developed in
chapter 10, and a code generator—the subject of this chapter.

The syntax analyzer was built in order to develop, and demonstrate, a
capability for parsing high-level programs into their underlying syntactical
elements. In this chapter we’ll morph the analyzer into a full-scale
compiler: a program that converts the parsed elements into VM commands
designed to execute on the abstract virtual machine described in chapters 7–
8. This approach follows the modular analysis-synthesis paradigm that
informs the construction of well-designed compilers. It also captures the
very essence of translating text from one language to another: first, one uses
the source language’s syntax for analyzing the source text and figuring out
its underlying semantics, that is, what the text seeks to say; next, one
reexpresses the parsed semantics using the syntax of the target language. In



the context of this chapter, the source and the target are Jack and the VM
language, respectively.

Modern high-level programming languages are rich and powerful. They
allow defining and using elaborate abstractions like functions and objects,
expressing algorithms using elegant statements, and building data structures
of unlimited complexity. In contrast, the hardware platforms on which these
programs ultimately run are spartan and minimal. Typically, they offer little
more than a set of registers for storage and a set of primitive instructions for
processing. Thus, the translation of programs from high level to low level is
a challenging feat. If the target platform is a virtual machine and not the
barebone hardware, life is somewhat easier since abstract VM commands
are not as primitive as concrete machine instructions. Still, the gap between
the expressiveness of a high-level language and that of a VM language is
wide and challenging.

The chapter begins with a general discussion of code generation, divided
into six sections. First, we describe how compilers use symbol tables for
mapping symbolic variables onto virtual memory segments. Next, we
present algorithms for compiling expressions and strings of characters. We
then present techniques for compiling statements like let, if, while, do, and
return. Taken together, the ability to compile variables, expressions, and
statements forms a foundation for building compilers for simple,
procedural, C-like languages. This sets the stage for the remainder of
section 11.1, in which we discuss the compilation of objects and arrays.

Section 11.2 (Specification) provides guidelines for mapping Jack
programs on the VM platform and language, and section 11.3
(Implementation) proposes a software architecture and an API for
completing the compiler’s development. As usual, the chapter ends with a
Project section, providing step-by-step guidelines and test programs for
completing the compiler’s construction, and a Perspective section that
comments on various things that were left out from the chapter.

So what’s in it for you? Although many professionals are eager to
understand how compilers work, few end up getting their hands dirty and
building a compiler from the ground up. That’s because the cost of this
experience—at least in academia—is typically a daunting, full-semester
elective course. Nand to Tetris packs the key elements of this experience
into four chapters and projects, culminating in the present chapter. In the



process, we discuss and illustrate the key algorithms, data structures, and
programming tricks underlying the construction of typical compilers.
Seeing these clever ideas and techniques in action leads one to marvel, once
again, at how human ingenuity can dress up a primitive switching machine
to look like something approaching magic.

11.1    Code Generation

High-level programmers work with abstract building blocks like variables,
expressions, statements, subroutines, objects and arrays. Programmers use
these abstract building blocks for describing what they want the program to
do. The job of the compiler is to translate this semantics into a language that
a target computer understands.

In our case, the target computer is the virtual machine described in
chapters 7–8. Thus, we have to figure out how to systematically translate
expressions, statements, subroutines, and the handling of variables, objects,
and arrays into sequences of stack-based VM commands that execute the
desired semantics on the target virtual machine. We don’t have to worry
about the subsequent translation of VM programs into machine language,
since we already took care of this royal headache in projects 7–8. Thank
goodness for two-tier compilation, and for modular design.

Throughout the chapter, we present compilation examples of various
parts of the Point class presented previously in the book. We repeat the class
declaration in figure 11.1, which illustrates most of the features of the Jack
language. We advise taking a quick look at this Jack code now to refresh
your memory about the Point class functionality. You will then be ready to
delve into the illuminating journey of systematically reducing this high-
level functionality—and any other similar object-based program—into VM
code.



Figure 11.1    The Point class. This class features all the possible variable kinds (field, static, local,
and argument) and subroutine kinds (constructor, method, and function), as well as subroutines
that return primitive types, object types, and void subroutines. It also illustrates function calls,
constructor calls, and method calls on the current object (this) and on other objects.

11.1.1    Handling Variables

One of the basic tasks of compilers is mapping the variables declared in the
source high-level program onto the host RAM of the target platform. For
example, consider Java: int variables are designed to represent 32-bit values;
long variables, 64-bit values; and so on. If the host RAM happens to be 32-
bit wide, the compiler will map int and long variables on one memory word
and on two consecutive memory words, respectively. In Nand to Tetris there
are no mapping complications: all the primitive types in Jack (int, char, and
boolean) are 16-bit wide, and so are the addresses and words of the Hack
RAM. Thus, every Jack variable, including pointer variables holding 16-bit
address values, can be mapped on exactly one word in memory.

The second challenge faced by compilers is that variables of different
kinds have different life cycles. Class-level static variables are shared
globally by all the subroutines in the class. Therefore, a single copy of each
static variable should be kept alive during the complete duration of the
program’s execution. Instance-level field variables are treated differently:
each object (instance of the class) must have a private set of its field



variables, and, when the object is no longer needed, this memory must be
freed. Subroutine-level local and argument variables are created each time a
subroutine starts running and must be freed when the subroutine terminates.

That’s the bad news. The good news is that we’ve already handled all
these difficulties. In our two-tier compiler architecture, memory allocation
and deallocation are delegated to the VM level. All we have to do now is
map Jack static variables on static 0, static 1, static 2, …; field variables on this
0, this 1, …; local variables on local 0, local 1, …; and argument variables on
argument 0, argument 1, …. The subsequent mapping of the virtual memory
segments on the host RAM, as well as the intricate management of their
run-time life cycles, are completely taken care of by the VM
implementation.

Recall that this implementation was not achieved easily: we had to work
hard to generate assembly code that dynamically maps the virtual memory
segments on the host RAM as a side effect of realizing the function call-
and-return protocol. Now we can reap the benefits of this effort: the only
thing required from the compiler is mapping the high-level variables onto
the virtual memory segments. All the subsequent gory details associated
with managing these segments on the RAM will be handled by the VM
implementation. That’s why we sometimes refer to the latter as the
compiler’s back end.

To recap, in a two-tier compilation model, the handling of variables can
be reduced to mapping high-level variables on virtual memory segments
and using this mapping, as needed, throughout code generation. These tasks
can be readily managed using a classical abstraction known as a symbol
table.

Symbol table: Whenever the compiler encounters variables in a high-level
statement, for example, let  it needs to know what the variables
stand for. Is x a static variable, a field of an object, a local variable, or an
argument of a subroutine? Does it represent an integer, a boolean, a char, or
some class type? All these questions must be answered—for code
generation—each time the variable x comes up in the source code. Of
course, the variable y should be treated exactly the same way.

The variable properties can be managed conveniently using a symbol
table. When a static, field, local, or argument variable is declared in the



source code, the compiler allocates it to the next available entry in the
corresponding static, this, local, or argument VM segment and records the
mapping in the symbol table. Whenever a variable is encountered elsewhere
in the code, the compiler looks up its name in the symbol table, retrieves its
properties, and uses them, as needed, for code generation.

An important feature of high-level languages is separate namespaces: the
same identifier can represent different things in different regions of the
program. To enable separate namespaces, each identifier is implicitly
associated with a scope, which is the region of the program in which it is
recognized. In Jack, the scope of static and field variables is the class in
which they are declared, and the scope of local and argument variables is
the subroutine in which they are declared. Jack compilers can realize the
scope abstractions by managing two separate symbol tables, as seen in
figure 11.2.

Figure 11.2    Symbol table examples. The this row in the subroutine-level table is discussed later in
the chapter.

The scopes are nested, with inner scopes hiding outer ones. For example,
when the Jack compiler encounters the expression  it first checks
whether x is a subroutine-level variable (local or argument). Failing that, the
compiler checks whether x is a static variable or a field. Some languages
feature nested scoping of unlimited depth, allowing variables to be local in
any block of code in which they are declared. To support unlimited nesting,
the compiler can use a linked list of symbol tables, each reflecting a single
scope nested within the next one in the list. When the compiler fails to find
the variable in the table associated with the current scope, it looks it up in



the next table in the list, from inner scopes outward. If the variable is not
found in the list, the compiler can throw an “undeclared variable” error.

In the Jack language there are only two scoping levels: the subroutine
that is presently being compiled, and the class in which the subroutine is
declared. Therefore, the compiler can get away with managing two symbol
tables only.

Handling variable declarations: When the Jack compiler starts compiling
a class declaration, it creates a class-level symbol table and a subroutine-
level symbol table. When the compiler parses a static or a field variable
declaration, it adds a new row to the class-level symbol table. The row
records the variable’s name, type (integer, boolean, char, or class name), kind
(static or field), and index within the kind.

When the Jack compiler starts compiling a subroutine (constructor,
method, or function) declaration, it resets the subroutine-level symbol table.
If the subroutine is a method, the compiler adds the row <this, className,
arg, 0> to the subroutine-level symbol table (this initialization detail is
explained in section 11.1.5.2 and can be ignored till then). When the
compiler parses a local or an argument variable declaration, it adds a new
row to the subroutine-level symbol table, recording the variable’s name,
type (integer, boolean, char, or class name), kind (var or arg), and index within
the kind. The index of each kind (var or arg) starts at 0 and is incremented by
1 after each time a new variable of that kind is added to the table.

Handling variables in statements: When the compiler encounters a
variable in a statement, it looks up the variable name in the subroutine-level
symbol table. If the variable is not found, the compiler looks it up in the
class-level symbol table. Once the variable has been found, the compiler
can complete the statement’s translation. For example, consider the symbol
tables shown in figure 11.2, and suppose we are compiling the high-level
statement let  The compiler will translate this statement into the VM
commands push this 1, push local 1, add, pop this 1. Here we assume that the
compiler knows how to handle expressions and let statements, subjects
which are taken up in the next two sections.

11.1.2    Compiling Expressions



Let’s start by considering the compilation of simple expressions like 
By “simple expression” we mean a sequence of term operator term
operator term …, where each term is either a variable or a constant, and
each operator is either +, −, *, or /.

In Jack, as in most high-level languages, expressions are written using
infix notation: To add x and y, one writes . In contrast, our compilation’s
target language is postfix: The same addition semantics is expressed in the
stack-oriented VM code as push x, push y, add. In chapter 10 we introduced
an algorithm that emits the parsed source code in infix using XML tags.
Although the parsing logic of this algorithm can remain the same, the
output part of the algorithm must now be modified for generating postfix
commands. Figure 11.3 illustrates this dichotomy.

Figure 11.3    Infix and postfix renditions of the same semantics.

To recap, we need an algorithm that knows how to parse an infix
expression and generate from it as output postfix code that realizes the same
semantics on a stack machine. Figure 11.4 presents one such algorithm. The
algorithm processes the input expression from left to right, generating VM
code as it goes along. Conveniently, this algorithm also handles unary
operators and function calls.



Figure 11.4    A VM code generation algorithm for expressions, and a compilation example. The
algorithm assumes that the input expression is valid. The final implementation of this algorithm
should replace the emitted symbolic variables with their corresponding symbol table mappings.

If we execute the stack-based VM code generated by the codeWrite
algorithm (right side of figure 11.4), the execution will end up consuming
all the expression’s terms and putting the expression’s value at the stack’s
top. That’s exactly what’s expected from the compiled code of an
expression.

So far we have dealt with relatively simple expressions. Figure 11.5 gives
the complete grammatical definition of Jack expressions, along with several
examples of actual expressions consistent with this definition.



Figure 11.5    Expressions in the Jack language.

The compilation of Jack expressions will be handled by a routine named
compileExpression. The developer of this routine should start with the
algorithm presented in figure 11.4 and extend it to handle the various
possibilities specified in figure 11.5. We will have more to say about this
implementation later in the chapter.

11.1.3    Compiling Strings

Strings—sequences of characters—are widely used in computer programs.
Object-oriented languages typically handle strings as instances of a class
named String (Jack’s String class, which is part of the Jack OS, is documented
in appendix 6). Each time a string constant comes up in a high-level
statement or expression, the compiler generates code that calls the String
constructor, which creates and returns a new String object. Next, the
compiler initializes the new object with the string characters. This is done
by generating a sequence of calls to the String method appendChar, one for
each character listed in the high-level string constant.



This implementation of string constants can be wasteful, leading to
potential memory leaks. To illustrate, consider the statement
Output.printString("Loading … please wait"). Presumably, all the high-level
programmer wants is to display a message; she certainly doesn’t care if the
compiler creates a new object, and she may be surprised to know that the
object will persist in memory until the program terminates. But that’s
exactly what actually happens: a new String object will be created, and this
object will keep lurking in the background, doing nothing.

Java, C#, and Python use a run-time garbage collection process that
reclaims the memory used by objects that are no longer in play (technically,
objects that have no variable referring to them). In general, modern
languages use a variety of optimizations and specialized string classes for
promoting the efficient use of string objects. The Jack OS features only one
String class and no string-related optimizations.

Operating system services: In the handling of strings, we mentioned for
the first time that the compiler can use OS services as needed. Indeed,
developers of Jack compilers can assume that every constructor, method,
and function listed in the OS API (appendix 6) is available as a compiled
VM function. Technically speaking, any one of these VM functions can be
called by the code generated by the compiler. This configuration will be
fully realized in chapter 12, in which we will implement the OS in Jack and
compile it into VM code.

11.1.4    Compiling Statements

The Jack programming language features five statements: let, do, return, if,
and while. We now turn to discuss how the Jack compiler generates VM code
that handles the semantics of these statements.

Compiling return statements: Now that we know how to compile
expressions, the compilation of return expression is simple. First, we call the
compileExpression routine, which generates VM code designed to evaluate and
put the expression’s value on the stack. Next, we generate the VM
command return.



Compiling let statements: Here we discuss the handling of statements of
the form let varName = expression. Since parsing is a left-to-right process,
we begin by remembering the varName. Next, we call compileExpression,
which puts the expression’s value on the stack. Finally, we generate the VM
command pop varName, where varName is actually the symbol table
mapping of varName (for example, local 3, static 1, and so on).

We’ll discuss the compilation of statements of the form let
varName[expression1] = expression2 later in the chapter, in a section
dedicated to handling arrays.

Compiling do statements: Here we discuss the compilation of function
calls of the form do className.functionName (exp1, exp2, … , expn). The do
abstraction is designed to call a subroutine for its effect, ignoring the return
value. In chapter 10 we recommended compiling such statements as if their
syntax were do expression. We repeat this recommendation here: to compile
a do className.functionName (…) statement, we call compileExpression and
then get rid of the topmost stack element (the expression’s value) by
generating a command like pop temp 0.

We’ll discuss the compilation of method calls of the form do
varName.methodName (…) and do methodName (…) later in the chapter, in
a section dedicated to compiling method calls.

Compiling if and while statements: High-level programming languages
feature a variety of control flow statements like if, while, for, and switch, of
which Jack features if and while. In contrast, low-level assembly and VM
languages control the flow of execution using two branching primitives:
conditional goto, and unconditional goto. Therefore, one of the challenges
faced by compiler developers is expressing the semantics of high-level
control flow statements using nothing more than goto primitives. Figure
11.6 shows how this gap can be bridged systematically.



Figure 11.6    Compiling if and while statements. The L1 and L2 labels are generated by the
compiler.

When the compiler detects an if keyword, it knows that it has to parse a
pattern of the form if (expression) {statements} else {statements}. Hence, the
compiler starts by calling compileExpression, which generates VM commands
designed to compute and push the expression’s value onto the stack. The
compiler then generates the VM command not, designed to negate the
expression’s value. Next, the compiler creates a label, say L1, and uses it for
generating the VM command if-goto L1. Next, the compiler calls
compileStatements. This routine is designed to compile a sequence of the form
statement; statement; … statement;, where each statement is either a let, a do,
a return, an if, or a while. The resulting VM code is referred to conceptually in
figure 11.6 as “compiled (statements).” The rest of the compilation strategy
is self-explanatory.

A high-level program normally contains multiple instances of if and while.
To handle this complexity, the compiler can generate labels that are globally
unique, for example, labels whose suffix is the value of a running counter.
Also, control flow statements are often nested—for example, an if within a
while within another while, and so on. Such nestings are taken care of
implicitly since the compileStatements routine is inherently recursive.

11.1.5    Handling Objects



So far in this chapter, we described techniques for compiling variables,
expressions, strings, and statements. This forms most of the know-how
necessary for building a compiler for a procedural, C-like language. In
Nand to Tetris, though, we aim higher: building a compiler for an object-
based, Java-like language. With that in mind, we now turn to discuss the
handling of objects.

Object-oriented languages feature means for declaring and manipulating
aggregate abstractions known as objects. Each object is implemented
physically as a memory block which can be referenced by a static, field,
local, or argument variable. The reference variable, also known as an object
variable, or pointer, contains the memory block’s base address. The
operating system realizes this model by managing a logical area in the
RAM named heap. The heap is used as a memory pool from which memory
blocks are carved, as needed, for representing new objects. When an object
is no longer needed, its memory block can be freed and recycled back to the
heap. The compiler stages these memory management actions by calling OS
functions, as we’ll see later.

At any given point during a program’s execution, the heap can contain
numerous objects. Suppose we want to apply a method, say foo, to one of
these objects, say p. In an object-oriented language, this is done through the
method call idiom p.foo(). Shifting our attention from the caller to the callee,
we note that foo—like any other method—is designed to operate on a
placeholder known as the current object, or this. In particular, when VM
commands in foo’s code make references to this 0, this 1, this 2, and so on,
they should effect the fields of p, the object on which foo was called. Which
begs the question: How do we align the this segment with p?

The virtual machine built in chapters 7–8 has a mechanism for realizing
this alignment: the two-valued pointer segment, mapped directly onto RAM
locations 3–4, also known as THIS and THAT. According to the VM
specification, the pointer THIS (referred to as pointer 0) is designed to hold the
base address of the memory segment this. Thus, to align the this segment
with the object p, we can push p’s value (which is an address) onto the stack
and then pop it into pointer 0. Versions of this initialization technique are
used conspicuously in the compilation of constructors and methods, as we
now turn to describe.



11.1.5.1 Compiling Constructors

In object-oriented languages, objects are created by subroutines known as
constructors. In this section we describe how to compile a constructor call
(e.g., Java’s new operator) from the caller’s perspective and how to compile
the code of the constructor itself—the callee.

Compiling constructor calls: Object construction is normally a two-stage
affair. First, one declares a variable of some class type, for example, var Point
p. At a later stage, one can instantiate the object by calling a class
constructor, for example, let p = Point.new(2,3). Or, depending on the language
used, one can declare and construct objects using a single high-level
statement. Behind the scenes, though, this action is always broken into two
separate stages: declaration followed by construction.

Let’s take a close look at the statement let p = Point.new(2,3). This
abstraction can be described as “have the Point.new constructor allocate a
two-word memory block for representing a new Point instance, initialize the
two words of this block to 2 and 3, and have p refer to the base address of
this block.” Implicit in this semantics are two assumptions: First, the
constructor knows how to allocate a memory block of the required size.
Second, when the constructor—being a subroutine—terminates its
execution, it returns to the caller the base address of the allocated memory
block. Figure 11.7 shows how this abstraction can be realized.



Figure 11.7    Object construction from the caller’s perspective. In this example, the caller declares
two object variables and then calls a class constructor for constructing the two objects. The
constructor works its magic, allocating memory blocks for representing the two objects. The calling
code then makes the two object variables refer to these memory blocks.

Three observations about figure 11.7 are in order. First, note that there is
nothing special about compiling statements like let p = Point.new(2,3) and let p
= Point.new(5,7). We already discussed how to compile let statements and
subroutine calls. The only thing that makes these calls special is the hocus-
pocus assumption that—somehow—two objects will be constructed. The
implementation of this magic is entirely delegated to the compilation of the
callee—the constructor. As a result of this magic, the constructor creates the
two objects seen in the RAM diagram in figure 11.7. This leads to the
second observation: The physical addresses 6012 and 9543 are irrelevant;
the high-level code as well as the compiled VM code have no idea where
the objects are stored in memory; the references to these objects are strictly
symbolic, via p1 and p2 in the high-level code and local 0 and local 1 in the
compiled code. (As a side comment, this makes the program relocatable and
safer.) Third, and stating the obvious, nothing of substance actually happens
until the generated VM code is executed. In particular, during compile-time,



the symbol table is updated, low-level code is generated, and that’s it. The
objects will be constructed and bound to the variables only during run-time,
that is, if and when the compiled code will be executed.

Compiling constructors: So far, we have treated constructors as black box
abstractions: we assume that they create objects, somehow. Figure 11.8
unravels this magic. Before inspecting the figure, note that a constructor is,
first and foremost, a subroutine. It can have arguments, local variables, and
a body of statements; thus the compiler treats it as such. What makes the
compilation of a constructor special is that in addition to treating it as a
regular subroutine, the compiler must also generate code that (i) creates a
new object and (ii) makes the new object the current object (also known as
this), that is, the object on which the constructor’s code is to operate.

Figure 11.8    Object construction: the constructor’s perspective.

The creation of a new object requires finding a free RAM block
sufficiently large to accommodate the new object’s data and marking the
block as used. These tasks are delegated to the host operating system.
According to the OS API listed in appendix 6, the OS function Memory.alloc
(size) knows how to find an available RAM block of a given size (number of
16-bit words) and return the block’s base address.



Memory.alloc and its sister function Memory.deAlloc use clever algorithms for
allocating and freeing RAM resources efficiently. These algorithms will be
presented and implemented in chapter 12, when we’ll build the operating
system. For now, suffice it to say that compilers generate low-level code
that uses alloc (in constructors) and deAlloc (in destructors), abstractly.

Before calling Memory.alloc, the compiler determines the size of the
required memory block. This can be readily computed from the class-level
symbol table. For example, the symbol table of the Point class specifies that
each Point object is characterized by two int values (the point’s x and y
coordinates). Thus, the compiler generates the commands push constant 2 and
call Memory.alloc 1, effecting the function call Memory.alloc(2). The OS function
alloc goes to work, finds an available RAM block of size 2, and pushes its
base address onto the stack—the VM equivalent of returning a value. The
next generated VM statement—pop pointer 0—sets THIS to the base address
returned by alloc. From this point onward, the constructor’s this segment will
be aligned with the RAM block that was allocated for representing the
newly constructed object.

Once the this segment is properly aligned, we can proceed to generate
code easily. For example, when the compileLet routine is called to handle the
statement let  it searches the symbol tables, resolving x to this 0 and ax
to argument 0. Thus, compileLet generates the commands push argument 0,
followed by pop this 0. The latter command rests on the assumption that the
this segment is properly aligned with the base address of the new object, as
indeed was done when we had set pointer 0 (actually, THIS) to the base
address returned by alloc. This one-time initialization ensures that all the
subsequent push / pop this i commands will end up hitting the right targets in
the RAM (more accurately, in the heap). We hope that the intricate beauty
of this contract is not lost on the reader.

According to the Jack language specification, every constructor must end
with a return this statement. This convention forces the compiler to end the
constructor’s compiled version with push pointer 0 and return. These
commands push onto the stack the value of THIS, the base address of the
constructed object. In some languages, like Java, constructors don’t have to
end with an explicit return this statement. Nonetheless, the compiled code of
Java constructors performs exactly the same action at the VM level, since



that’s what constructors are expected to do: create an object and return its
handle to the caller.

Recall that the elaborate low-level drama just described was unleashed
by the caller-side statement let varName = className.constructorName (…).
We now see that, by design, when the constructor terminates, varName ends
up storing the base address of the new object. When we say “by design,” we
mean by the syntax of the high-level object construction idiom and by the
hard work that the compiler, the operating system, the VM translator, and
the assembler have to do in order to realize this abstraction. The net result is
that high-level programmers are spared from all the gory details of object
construction and are able to create objects easily and transparently.

11.1.5.2 Compiling Methods

As we did with constructors, we’ll describe how to compile method calls
and then how to compile the methods themselves.

Compiling method calls: Suppose we wish to compute the Euclidean
distance between two points in a plane, p1 and p2. In C-style procedural
programming, this could have been implemented using a function call like
distance(p1,p2), where p1 and p2 represent composite data types. In object-
oriented programming, though, p1 and p2 will be implemented as instances
of some Point class, and the same computation will be done using a method
call like p1.distance(p2). Unlike functions, methods are subroutines that
always operate on a given object, and it’s the caller’s responsibility to
specify this object. (The fact that the distance method takes another Point
object as an argument is a coincidence. In general, while a method is always
designed to operate on an object, the method can have 0, 1, or more
arguments, of any type).

Observe that distance can be described as a procedure for computing the
distance from a given point to another, and p1 can be described as the data
on which the procedure operates. Also, note that both idioms distance(p1,p2)
and p1.distance(p2) are designed to compute and return the same value. Yet
while the C-style syntax puts the focus on distance, in the object-oriented
syntax, the object comes first, literally speaking. That’s why C-like
languages are sometimes called procedural, and object-oriented languages



are said to be data-driven. Among other things, the object-oriented
programming style is based on the assumption that objects know how to
take care of themselves. For example, a Point object knows how to compute
the distance between it and another Point object. Said otherwise, the distance
operation is encapsulated within the definition of being a Point.

The agent responsible for bringing all these fancy abstractions down to
earth is, as usual, the hard-working compiler. Because the target VM
language has no concept of objects or methods, the compiler handles
object-oriented method calls like p1.distance (p2) as if they were procedural
calls like distance (p1,p2). Specifically, it translates p1.distance (p2) into push p1,
push p2, call distance. Let us generalize: Jack features two kinds of method
calls:

To compile the method call varName.methodName(exp1, exp2, …, expn), we
start by generating the command push varName, where varName is the
symbol table mapping of varName. If the method call mentions no
varName, we push the symbol table mapping of this. Next, we call
compileExpressionList. This routine calls compileExpression n times, once for each
expression in the parentheses. Finally, we generate the command call
className.methodName  informing that  arguments were pushed
onto the stack. The special case of calling an argument-less method is
translated into call className.methodName 1. Note that className is the
symbol table type of the varName identifier. See figure 11.9 for an example.



Figure 11.9    Compiling method calls: the caller’s perspective.

Compiling methods: So far we discussed the distance method abstractly,
from the caller’s perspective. Consider how this method could be
implemented, say, in Java:

Like any method, distance is designed to operate on the current object,
represented in Java (and in Jack) by the built-in identifier this. As the above
example illustrates, though, one can write an entire method without ever
mentioning this. That’s because the friendly Java compiler handles
statements like  as if they were  This
convention makes high-level code more readable and easier to write.



We note in passing, though, that in the Jack language, the idiom
object.field is not supported. Therefore, fields of objects other than the
current object can be manipulated only using accessor and mutator
methods. For example, expressions like x – other.x are implemented in Jack
as x – other.getx(), where getx is an accessor method in the Point class.

So how does the Jack compiler handle expressions like x – other.getx()?
Like the Java compiler, it looks up x in the symbol tables and finds that it
represents the first field in the current object. But which object in the pool
of so many objects out there does the current object represent? Well,
according to the method call contract, it must be the first argument that was
passed by the method’s caller. Therefore, from the callee’s perspective, the
current object must be the object whose base address is the value of argument
0. This, in a nutshell, is the low-level compilation trick that makes the
ubiquitous abstraction “apply a method to an object” possible in languages
like Java, Python, and, of course, Jack. See figure 11.10 for the details.

Figure 11.10    Compiling methods: the callee’s perspective.

The example starts at the top left of figure 11.10, where the caller’s code
makes the method call p1.distance(p2). Turning our attention to the compiled
version of the callee, note that the code proper starts with push argument 0,
followed by pop pointer 0. These commands set the method’s THIS pointer to



the value of argument 0, which, by virtue of the method calling contract,
contains the base address of the object on which the method was called to
operate. Thus, from this point onward, the method’s this segment is properly
aligned with the base address of the target object, making every push / pop
this i command properly aligned as well. For example, the expression x—
other.getx () will be compiled into push this 0, push argument 1, call Point.getx 1,
sub. Since we started the compiled method code by setting THIS to the base
address of the called object, we are guaranteed that this 0 (and any other
reference this i) will hit the mark, targeting the right field of the right object.

11.1.6    Compiling Arrays

Arrays are similar to objects. In Jack, arrays are implemented as instances
of an Array class, which is part of the operating system. Thus, arrays and
objects are declared, implemented, and stored exactly the same way; in fact,
arrays are objects, with the difference that the array abstraction allows
accessing array elements using an index, for example, let arr  The
agent that makes this useful abstraction concrete is the compiler, as we now
turn to describe.

Using pointer notation, observe that arr[i] can be written as  that
is, memory address  This insight holds the key for compiling
statements like let  To compute the physical address of arr[i], we
execute push arr, push i, add, which results in pushing the target address onto
the stack. Next, we execute pop pointer 1. According to the VM specification,
this action stores the target address in the method’s THAT pointer (RAM[4]),
which has the effect of aligning the base address of the virtual segment that
with the target address. Thus we can now execute push that 0 and pop x,
completing the low-level translation of let  See figure 11.11 for the
details.



Figure 11.11    Array access using VM commands.

This nice compilation strategy has only one problem: it doesn’t work.
More accurately, it works with statements like let  but fails with
statements in which the left-hand side of the assignment is indexed, as in let

 See figure 11.12.

Figure 11.12    Basic compilation strategy for arrays, and an example of the bugs that it can generate.
In this particular case, the value stored in pointer 1 is overridden, and the address of a[i] is lost.

The good news is that this flawed compilation strategy can be easily
fixed to compile correctly any instance of let arr[expression1] = expression2.
As before, we start by generating the command push arr, calling
compileExpression, and generating the command add. This sequence puts the
target address (arr + expression1) at the stack’s top. Next, we call



compileExpression, which will end up putting at the stack’s top the value of
expression2. At this point we save this value—we can do it using pop temp 0.
This operation has the nice side effect of making (arr + expression1) the top
stack element. Thus we can now pop pointer 1, push temp 0, and pop that 0. This
little fix, along with the recursive nature of the compileExpression routine,
makes this compilation strategy capable of handling let arr[expression1] =
expression2 statements of any recursive complexity, such as, say, let

In closing, several things make the compilation of Jack arrays relatively
simple. First, Jack arrays are not typed; rather, they are designed to store
16-bit values, with no restrictions. Second, all primitive data types in Jack
are 16-bit wide, all addresses are 16-bit wide, and so is the RAM’s word
width. In strongly typed programming languages, and in languages where
this one-to-one correspondence cannot be guaranteed, the compilation of
arrays requires more work.

11.2    Specification

The compilation challenges and solutions that we have described so far can
be generalized to support the compilation of any object-based programming
language. We now turn from the general to the specific: from here to the
end of the chapter, we describe the Jack compiler. The Jack compiler is a
program that gets a Jack program as input and generates executable VM
code as output. The VM code realizes the program’s semantics on the
virtual machine specified in chapters 7–8.

Usage: The compiler accepts a single command-line argument, as follows,

prompt> JackCompiler source

where source is either a file name of the form Xxx.jack (the extension is
mandatory) or the name of a folder (in which case there is no extension)
containing one or more .jack files. The file/folder name may contain a file
path. If no path is specified, the compiler operates on the current folder. For
each Xxx.jack file, the compiler creates an output file Xxx.vm and writes the



VM commands into it. The output file is created in the same folder as the
input file. If there is a file by this name in the folder, it will be overwritten.

11.3    Implementation

We now turn to provide guidelines, implementation tips, and a proposed
API for extending the syntax analyzer built in chapter 10 into a full-scale
Jack compiler.

11.3.1    Standard Mapping over the Virtual Machine

Jack compilers can be developed for different target platforms. This section
provides guidelines on how to map various constructs of the Jack language
on one specific platform: the virtual machine specified in chapters 7–8.

Naming Files and Functions

A Jack class file Xxx.jack is compiled into a VM class file named Xxx.vm

A Jack subroutine yyy in file Xxx.jack is compiled into a VM function
named Xxx.yyy

Mapping Variables

The first, second, third, … static variable declared in a class declaration is
mapped on the virtual segment entry static 0, static 1, static 2, …
The first, second, third, … field variable declared in a class declaration is
mapped on this 0, this 1, this 2, …
The first, second, third, … local variable declared in the var statements of
a subroutine is mapped on local 0, local 1, local 2, …
The first, second, third, … argument variable declared in the parameter
list of a function or a constructor (but not a method) is mapped on argument
0, argument 1, argument 2, …
The first, second, third, … argument variable declared in the parameter
list of a method is mapped on argument 1, argument 2, argument 3, …



Mapping Object Fields

To align the virtual segment this with the object passed by the caller of a
method, use the VM commands push argument 0, pop pointer 0.

Mapping Array Elements

The high-level reference arr[expression] is compiled by setting pointer 1 to (arr
+ expression) and accessing that 0.

Mapping Constants

References to the Jack constants null and false are compiled into push
constant 0.
References to the Jack constant true are compiled into push constant 1, neg.
This sequence pushes the value −1 onto the stack.
References to the Jack constant this are compiled into push pointer 0. This
command pushes the base address of the current object onto the stack.

11.3.2    Implementation Guidelines

Throughout this chapter we have seen many conceptual compilation
examples. We now give a concise and formal summary of all these
compilation techniques.

Handling Identifiers

The identifiers used for naming variables can be handled using symbol
tables. During the compilation of valid Jack code, any identifier not found
in the symbol tables may be assumed to be either a subroutine name or a
class name. Since the Jack syntax rules suffice for distinguishing between
these two possibilities, and since the Jack compiler performs no “linking,”
there is no need to keep these identifiers in a symbol table.

Compiling Expressions



The compileExpression routine should process the input as the sequence term
op term op term …. To do so, compileExpression should implement the
codeWrite algorithm (figure 11.4), extended to handle all the possible terms
specified in the Jack grammar (figure 11.5). Indeed, an inspection of the
grammar rules reveals that most of the action in compiling expressions
occurs in the compilation of their underlying terms. This is especially true
following our recommendation that the compilation of subroutine calls be
handled directly by the compilation of terms (implementation notes
following the CompilationEngine API, section 10.3).

The expression grammar and thus the corresponding compileExpression
routine are inherently recursive. For example, when compileExpression detects
a left parenthesis, it should recursively call compileExpression to handle the
inner expression. This recursive descent ensures that the inner expression
will be evaluated first. Except for this priority rule, the Jack language
supports no operator priority. Handling operator priority is of course
possible, but in Nand to Tetris we consider it an optional compiler-specific
extension, not a standard feature of the Jack language.

The expression x * y is compiled into push x, push y, call Math.multiply 2. The
expression x / y is compiled into push x, push y, call Math.divide 2. The Math class
is part of the OS, documented in appendix 6. This class will be developed in
chapter 12.

Compiling Strings

Each string constant "ccc … c" is handled by (i) pushing the string length
onto the stack and calling the String.new constructor, and (ii) pushing the
character code of c on the stack and calling the String method appendChar,
once for each character c in the string (the Jack character set is documented
in appendix 5). As documented in the String class API in appendix 6, both
the new constructor and the appendChar method return the string as the return
value (i.e., they push the string object onto the stack). This simplifies
compilation, avoiding the need to re-push the string each time appendChar is
called.

Compiling Function Calls and Constructor Calls



The compiled version of calling a function or calling a constructor that has
n arguments must (i) call compileExpressionList, which will call
compileExpression n times, and (ii) make the call informing that n arguments
were pushed onto the stack before the call.

Compiling Method Calls

The compiled version of calling a method that has n arguments must (i)
push a reference to the object on which the method is called to operate, (ii)
call compileExpressionList, which will call compileExpression n times, and (iii)
make the call, informing that  arguments were pushed onto the stack
before the call.

Compiling do Statements

We recommend compiling do subroutineCall statements as if they were do
expression statements, and then yanking the topmost stack value using pop
temp 0.

Compiling Classes

When starting to compile a class, the compiler creates a class-level symbol
table and adds to it all the field and static variables declared in the class
declaration. The compiler also creates an empty subroutine-level symbol
table. No code is generated.

Compiling Subroutines

When starting to compile a subroutine (constructor, function, or method),
the compiler initializes the subroutine’s symbol table. If the subroutine is
a method, the compiler adds to the symbol table the mapping <this,
className, arg, 0>.
Next, the compiler adds to the symbol table all the parameters, if any,
declared in the subroutine’s parameter list. Next, the compiler handles all
the var declarations, if any, by adding to the symbol table all the
subroutine’s local variables.



At this stage the compiler starts generating code, beginning with the
command function className.subroutineName nVars, where nVars is the
number of local variables in the subroutine.
If the subroutine is a method, the compiler generates the code push
argument 0, pop pointer 0. This sequence aligns the virtual memory segment
this with the base address of the object on which the method was called.

Compiling Constructors

First, the compiler performs all the actions described in the previous
section, ending with the generation of the command function
className.constructorName nVars.
Next, the compiler generates the code push constant nFields, call Memory.alloc
1, pop pointer 0, where nFields is the number of fields in the compiled class.
This results in allocating a memory block of nFields 16-bit words and
aligning the virtual memory segment this with the base address of the
newly allocated block.
The compiled constructor must end with push pointer 0, return. This
sequence returns to the caller the base address of the new object created
by the constructor.

Compiling Void Methods and Void Functions

Every VM function is expected to push a value onto the stack before
returning. When compiling a void Jack method or function, the convention
is to end the generated code with push constant 0, return.

Compiling Arrays

Statements of the form let arr[expression1] = expression2 are compiled using
the technique described at the end of section 11.1.6. Implementation tip:
When handling arrays, there is never a need to use that entries whose index
is greater than 0.

The Operating System



Consider the high-level expression . The
compiler compiles it into the VM commands push dx, push dx, call
Math.multiply 2, push dy, push dy, call Math.multiply 2, add, call Math.sqrt 1, where dx
and dy are the symbol table mappings of dx and dy. This example illustrates
the two ways in which operating system services come into play during
compilation. First, some high-level abstractions, like the expression x * y,
are compiled by generating code that calls OS subroutines like Math.multiply.
Second, when a Jack expression includes a high-level call to an OS routine,
for example, Math.sqrt(x), the compiler generates VM code that makes
exactly the same call using VM postfix syntax.

The OS features eight classes, documented in appendix 6. Nand to Tetris
provides two different implementations of this OS—native and emulated.

Native OS Implementation

In project 12 you will develop the OS class library in Jack and compile it
using a Jack compiler. The compilation will yield eight .vm files, comprising
the native OS implementation. If you put these eight .vm files in the same
folder that stores the .vm files resulting from the compilation of any Jack
program, all the OS functions will become accessible to the compiled VM
code since they belong to the same code base.

Emulated OS Implementation

The supplied VM emulator, which is a Java program, features a Java-based
implementation of the Jack OS. Whenever the VM code loaded into the
emulator calls an OS function, the emulator checks whether a VM function
by that name exists in the loaded code base. If so, it executes the VM
function. Otherwise, it calls the built-in implementation of this OS function.
The bottom line is this: If you use the supplied VM emulator for executing
the VM code generated by your compiler, as we do in project 11, you need
not worry about the OS configuration; the emulator will service all the OS
calls without further ado.

11.3.3    Software Architecture



The proposed compiler architecture builds upon the syntax analyzer
described in chapter 10. Specifically, we propose to gradually evolve the
syntax analyzer into a full-scale compiler, using the following modules:

JackCompiler: main program, sets up and invokes the other modules
JackTokenizer: tokenizer for the Jack language
SymbolTable: keeps track of all the variables found in the Jack code
VMWriter: writes VM code
CompilationEngine: recursive top-down compilation engine

The JackCompiler

This module drives the compilation process. It operates on either a file
name of the form Xxx.jack or on a folder name containing one or more such
files. For each source Xxx.jack file, the program

1. creates a JackTokenizer from the Xxx.jack input file;
2. creates an output file named Xxx.vm; and
3. uses a CompilationEngine, a SymbolTable, and a VMWriter for parsing the input

file and emitting the translated VM code into the output file.

We provide no API for this module, inviting you to implement it as you see
fit. Remember that the first routine that must be called when compiling a
.jack file is compileClass.

The JackTokenizer

This module is identical to the tokenizer built in project 10. See the API in
section 10.3.

The SymbolTable

This module provides services for building, populating, and using symbol
tables that keep track of the symbol properties name, type, kind, and a
running index for each kind. See figure 11.2 for an example.



Implementation note: During the compilation of a Jack class file, the Jack
compiler uses two instances of SymbolTable.

The VMWriter

This module features a set of simple routines for writing VM commands
into the output file.



The CompilationEngine

This module runs the compilation process. Although the CompilationEngine
API is almost identical the API presented in chapter 10, we repeat it here
for ease of reference.

The CompilationEngine gets its input from a JackTokenizer and uses a VMWriter
for writing the VM code output (instead of the XML produced in project
10). The output is generated by a series of compilexxx routines, each
designed to handle the compilation of a specific Jack language construct xxx
(for example, compileWhile generates the VM code that realizes while
statements). The contract between these routines is as follows: Each



compilexxx routine gets from the input and handles all the tokens that make
up xxx, advances the tokenizer exactly beyond these tokens, and emits to
the output VM code effecting the semantics of xxx. If xxx is a part of an
expression, and thus has a value, the emitted VM code should compute this
value and leave it at the top of the stack. As a rule, each compilexxx routine is
called only if the current token is xxx. Since the first token in a valid .jack
file must be the keyword class, the compilation process starts by calling the
routine compileClass.





Note: The following Jack grammar rules have no corresponding compile
xxx routines in the CompilationEngine: type, className, subroutineName,
varName, statement, subroutineCall.

The parsing logic of these rules should be handled by the routines that
implement the rules that refer to them. The Jack language grammar is
presented in section 10.2.1.

Token lookahead: The need for token lookahead, and the proposed
solution for handling it, are discussed in section 10.3, just after the
CompilationEngine API.

11.4    Project

Objective: Extend the syntax analyzer built in chapter 10 into a full-scale
Jack compiler. Apply your compiler to all the test programs described
below. Execute each translated program, and make sure that it operates
according to its given documentation.

This version of the compiler assumes that the source Jack code is error-
free. Error checking, reporting, and handling can be added to later versions
of the compiler but are not part of project 11.

Resources: The main tool that you need is the programming language in
which you will implement the compiler. You will also need the supplied
VM emulator for testing the VM code generated by your compiler. Since
the compiler is implemented by extending the syntax analyzer built in
project 10, you will also need the analyzer’s source code.

Implementation Stages

We propose morphing the syntax analyzer built in project 10 into the final
compiler. In particular, we propose to gradually replace the routines that
generate passive XML output with routines that generate executable VM
code. This can be done in two main development stages.



(Stage 0: Make a backup copy of the syntax analyzer code developed in
project 10.)

Stage 1: Symbol table: Start by building the compiler’s SymbolTable module,
and use it for extending the syntax analyzer built in Project 10, as follows.
Presently, whenever an identifier is encountered in the source code, say foo,
the syntax analyzer outputs the XML line <identifier> foo </identifier>. Instead,
extend your syntax analyzer to output the following information about each
identifier:

name
category (field, static, var, arg, class, subroutine)
index: if the identifier’s category is field, static, var, or arg, the running index
assigned to the identifier by the symbol table
usage: whether the identifier is presently being declared (for example, the
identifier appears in a static / field / var Jack variable declaration) or used
(for example, the identifier appears in a Jack expression)

Have your syntax analyzer output this information as part of its XML
output, using markup tags of your choice.

Test your new SymbolTable module and the new functionality just
described by running your extended syntax analyzer on the test Jack
programs supplied in project 10. If your extended syntax analyzer outputs
the information described above correctly it means that you’ve developed a
complete executable capability to understand the semantics of Jack
programs. At this stage you can make the switch to developing the full-
scale compiler and start generating VM code instead of XML output. This
can be done gradually, as we now turn to describe.

(Stage 1.5: Make a backup copy of the extended syntax analyzer code).

Stage 2: Code generation: We provide six application programs, designed
to gradually unit-test the code generation capabilities of your Jack compiler.
We advise developing, and testing, your evolving compiler on the test
programs in the given order. This way, you will be implicitly guided to



build the compiler’s code generation capabilities in sensible stages,
according to the demands presented by each test program.

Normally, when one compiles a high-level program and runs into
difficulties, one concludes that the program is screwed up. In this project
the setting is exactly the opposite. All the supplied test programs are error-
free. Therefore, if their compilation yields any errors, it’s the compiler that
you have to fix, not the programs. Specifically, for each test program, we
recommend going through the following routine:

1. Compile the program folder using the compiler that you are developing.
This action should generate one .vm file for each source .jack file in the
given folder.

2. Inspect the generated VM files. If there are visible problems, fix your
compiler and go to step 1. Remember: All the supplied test programs are
error-free.

3. Load the program folder into the VM emulator, and run the loaded code.
Note that each one of the six supplied test programs contains specific
execution guidelines; test the compiled program (translated VM code)
according to these guidelines.

4. If the program behaves unexpectedly, or if an error message is displayed
by the VM emulator, fix your compiler and go to step 1.

Test Programs

Seven: Tests how the compiler handles a simple program containing an
arithmetic expression with integer constants, a do statement, and a return
statement. Specifically, the program computes the expression  and
prints its value at the top left of the screen. To test whether your compiler
has translated the program correctly, run the translated code in the VM
emulator, and verify that it displays 7 correctly.

ConvertToBin: Tests how the compiler handles all the procedural elements of
the Jack language: expressions (without arrays or method calls), functions,
and the statements if, while, do, let, and return. The program does not test the
handling of methods, constructors, arrays, strings, static variables, and field
variables. Specifically, the program gets a 16-bit decimal value from



RAM[8000], converts it to binary, and stores the individual bits in RAM[8001…
8016] (each location will contain 0 or 1). Before the conversion starts, the
program initializes RAM[8001…8016] to . To test whether your compiler has
translated the program correctly, load the translated code into the VM
emulator, and proceed as follows:

Put (interactively, using the emulator’s GUI) some decimal value in
RAM[8000].
Run the program for a few seconds, then stop its execution.
Check (by visual inspection) that memory locations RAM[8001…8016]
contain the correct bits and that none of them contains .

Square: Tests how the compiler handles the object-based features of the Jack
language: constructors, methods, fields, and expressions that include
method calls. Does not test the handling of static variables. Specifically, this
multiclass program stages a simple interactive game that enables moving a
black square around the screen using the keyboard’s four arrow keys.

While moving, the size of the square can be increased and decreased by
pressing the z and x keys, respectively. To quit the game, press the q key. To
test whether your compiler has translated the program correctly, run the
translated code in the VM emulator, and verify that the game works as
expected.

Average: Tests how the compiler handles arrays and strings. This is done by
computing the average of a user-supplied sequence of integers. To test
whether your compiler has translated the program correctly, run the
translated code in the VM emulator, and follow the instructions displayed
on the screen.

Pong: A complete test of how the compiler handles an object-based
application, including the handling of objects and static variables. In the
classical Pong game, a ball is moving randomly, bouncing off the edges of
the screen. The user tries to hit the ball with a small paddle that can be
moved by pressing the keyboard’s left and right arrow keys. Each time the
paddle hits the ball, the user scores a point and the paddle shrinks a little,
making the game increasingly more challenging. If the user misses and the



ball hits the bottom the game is over. To test whether your compiler has
translated this program correctly, run the translated code in the VM
emulator and play the game. Make sure to score some points to test the part
of the program that displays the score on the screen.

ComplexArrays: Tests how the compiler handles complex array references
and expressions. To that end, the program performs five complex
calculations using arrays. For each such calculation, the program prints on
the screen the expected result along with the result computed by the
compiled program. To test whether your compiler has translated the
program correctly, run the translated code in the VM emulator, and make
sure that the expected and actual results are identical.

A web-based version of project 11 is available at www.nand2tetris.org.

11.5    Perspective

Jack is a general-purpose, object-based programming language. By design,
it was made to be a relatively simple language. This simplicity allowed us
to sidestep several thorny compilation issues. For example, while Jack
looks like a typed language, that is hardly the case: all of Jack’s data types
—int, char, and boolean—are 16 bits wide, allowing Jack compilers to ignore
almost all type information. In particular, when compiling and evaluating
expressions, Jack compilers need not determine their types. The only
exception is the compilation of method calls of the form x.m(), which
requires determining the class type of x. Another aspect of the Jack type
simplicity is that array elements are not typed.

Unlike Jack, most programming languages feature rich type systems,
which place additional demands on their compilers: different amounts of
memory must be allocated for different types of variables; conversion from
one type into another requires implicit and explicit casting operations; the
compilation of a simple expression like  depends strongly on the types
of x and y; and so on.

Another significant simplification is that the Jack language does not
support inheritance. In languages that support inheritance, the handling of

http://www.nand2tetris.org/


method calls like x.m() depends on the class membership of the object x,
which can be determined only during run-time. Therefore, compilers of
object-oriented languages that feature inheritance must treat all methods as
virtual and resolve their class memberships according to the run-time type
of the object on which the method is applied. Since Jack does not support
inheritance, all method calls can be compiled statically during compile
time.

Another common feature of object-oriented languages not supported by
Jack is the distinction between private and public class members. In Jack,
all static and field variables are private (recognized only within the class in
which they are declared), and all subroutines are public (can be called from
any class).

The lack of real typing, inheritance, and public fields allows a truly
independent compilation of classes: a Jack class can be compiled without
accessing the code of any other class. The fields of other classes are never
referred to directly, and all linking to methods of other classes is “late” and
done just by name.

Many other simplifications of the Jack language are not significant and
can be relaxed with little effort. For example, one can easily extend the
language with for and switch statements. Likewise, one can add the capability
to assign character constants like 'c' to char type variables, which is presently
not supported by the language.

Finally, our code generation strategies paid no attention to optimization.
Consider the high-level statement c++. A naïve compiler will translate it
into the series of low-level VM operations push c, push 1, add, pop c. Next, the
VM translator will translate each one of these VM commands further into
several machine-level instructions, resulting in a considerable chunk of
code. At the same time, an optimized compiler will notice that we are
dealing with a simple increment and translate it into, say, the two machine
instructions @c followed by  Of course, this is only one example of
the finesse expected from industrial-strength compilers. In general,
compiler writers invest much effort and ingenuity to ensure that the
generated code is time- and space-efficient.

In Nand to Tetris, efficiency is rarely an issue, with one major exception:
the operating system. The Jack OS is based on efficient algorithms and
optimized data structures, as we’ll elaborate in the next chapter.



 

12     Operating System

Civilization progresses by extending the number of operations that we can perform without thinking
about them.

—Alfred North Whitehead, Introduction to Mathematics (1911)

In chapters 1–6 we described and built a general-purpose hardware
architecture. In chapters 7–11 we developed a software hierarchy that
makes the hardware usable, culminating in the construction of a modern,
object-based language. Other high-level programming languages can be
specified and implemented on top of the hardware platform, each requiring
its own compiler.

The last major piece missing in this puzzle is an operating system. The
OS is designed to close gaps between the computer’s hardware and
software, making the computer system more accessible to programmers,
compilers, and users. For example, to display the text Hello World on the
screen, several hundred pixels must be drawn at specific screen locations.
This can be done by consulting the hardware specification and writing code
that turns bits on and off in selected RAM locations. Clearly, high-level
programmers expect a better interface. They want to write print ("Hello World")
and let someone else worry about the details. That’s where the operating
system enters the picture.

Throughout this chapter, the term operating system is used rather loosely.
Our OS is minimal, aiming at (i) encapsulating low-level hardware-specific
services in high-level programmer-friendly software services and (ii)
extending high-level languages with commonly used functions and abstract
data types. The dividing line between an operating system in this sense and
a standard class library is not clear. Indeed, modern programming



languages pack many standard operating system services like graphics,
memory management, multitasking, and numerous other extensions into
what is known as the language’s standard class library. Following this
model, the Jack OS is packaged as a collection of supporting classes, each
providing a set of related services via Jack subroutine calls. The complete
OS API is given in appendix 6.

High-level programmers expect the OS to deliver its services through
well-designed interfaces that hide the gory hardware details from their
application programs. To do so, the OS code must operate close to the
hardware, manipulating memory, input/output, and processing devices
almost directly. Further, because the OS supports the execution of every
program that runs on the computer, it must be highly efficient. For example,
application programs create and dispose objects and arrays all the time.
Therefore, we better do it quickly and economically. Any gain in the time-
and space-efficiency of an enabling OS service can impact dramatically the
performance of all the application programs that depend on it.

Operating systems are usually written in a high-level language and
compiled into binary form. Our OS is no exception—it is written in Jack,
just like Unix was written in C. Like the C language, Jack was designed
with sufficient “lowness” in it, permitting an intimate closeness to the
hardware when needed.

The chapter starts with a relatively long Background section that presents
key algorithms normally used is OS implementations. These include
mathematical operations, string manipulations, memory management, text
and graphics output, and keyboard input. This algorithmic introduction is
followed by a Specification section describing the Jack OS, and an
Implementation section that offers guidance on how to build the OS using
the algorithms presented. As usual, the Project section provides the
necessary guidelines and materials for gradually constructing and unit-
testing the entire OS.

The chapter embeds key lessons in system-oriented software engineering
and in computer science. On the one hand, we describe programming
techniques for developing low-level system services, as well as
“programming at the large” techniques for integrating and streamlining the
OS services. On the other hand, we present a set of elegant and highly
efficient algorithms, each being a computer science gem.



12.1    Background

Computers are typically connected to a variety of input/output devices such
as a keyboard, screen, mouse, mass storage, network interface card,
microphone, speakers, and more. Each of these I/O devices has its own
electromechanical idiosyncrasies; thus, reading and writing data on them
involves many technical details. High-level languages abstract away these
details by offering high-level abstractions like let n = Keyboard.readInt("Enter a
number:"). Let’s delve into what should be done in order to realize this
seemingly simple data-entry operation.

First, we engage the user by displaying the prompt Enter a number:. This
entails creating a String object and initializing it to the array of char values 'E',
'n', 't', …, and so on. Next, we have to render this string on the screen, one
character at a time, while updating the cursor position for keeping track of
where the next character should be physically displayed. After displaying
the Enter a number: prompt, we have to stage a loop that waits until the user
will oblige to press some keys on the keyboard—hopefully keys that
represent digits. This requires knowing how to (i) capture a keystroke, (ii)
get a single character input, (iii) append these characters to a string, and (iv)
convert the string into an integer value.

If what has been elaborated so far sounds arduous, the reader should
know that we were actually quite gentle, sweeping many gory details under
the rug. For example, what exactly is meant by “creating a string object,”
“displaying a character on the screen,” and “getting a multicharacter input”?

Let’s start with “creating a string object.” String objects don’t pop out of
thin air, fully formed. Each time we want to create an object, we must find
available space for representing the object in the RAM, mark this space as
used, and remember to free it when the object is no longer needed.
Proceeding to the “display a character” abstraction, note that characters
cannot be displayed. The only things that can be physically displayed are
individual pixels. Thus, we have to figure out what is the character’s font,
compute where the bits that represent the font image can be found in the
screen memory map, and then turn these bits on and off as needed. Finally,
to “get a multicharacter input,” we have to enter a loop that not only listens
to the keyboard and accumulates characters as they come along but also



allows the user to backspace, delete, and retype characters, not to mention
the need to echo each of these actions on the screen for visual feedback.

The agent that takes care of this elaborate behind-the-scenes work is the
operating system. The execution of the statement let n = Keyboard.readInt("Enter
a number:") entails many OS function calls, dealing with diverse issues like
memory allocation, input driving, output driving, and string processing.
Compilers use the OS services abstractly by injecting OS function calls into
the compiled code, as we saw in the previous chapter. In this chapter we
explore how these functions are actually realized. Of course, what we have
surveyed so far is just a small subset of the OS responsibilities. For
example, we didn’t mention mathematical operations, graphical output, and
other commonly needed services. The good news is that a well-written OS
can integrate these diverse and seemingly unrelated tasks in an elegant and
efficient way, using cool algorithms and data structures. That’s what this
chapter is all about.

12.1.1    Mathematical Operations

The four arithmetic operations addition, subtraction, multiplication, and
division lie at the core of almost every computer program. If a loop that
executes a million times contains expressions that use some of these
operations, they’d better be implemented efficiently.

Normally, addition is implemented in hardware, at the ALU level, and
subtraction is gained freely, courtesy of the two’s complement method.
Other arithmetic operations can be handled either by hardware or by
software, depending on cost/performance considerations. We now turn to
present efficient algorithms for computing multiplication, division, and
square roots. These algorithms lend themselves to both software and
hardware implementations.

Efficiency First

Mathematical algorithms are made to operate on n-bit values, n typically
being 16, 32, or 64 bits, depending on the operands’ data types. As a rule,
we seek algorithms whose running time is a polynomial function of this



word size n. Algorithms whose running time depends on the values of n-bit
numbers are unacceptable, since these values are exponential in n. For
example, suppose we implement the multiplication operation x × y naïvely,
using the repeated addition algorithm for  If y is 64-bit
wide, its value may well be greater than 9,000,000,000,000,000,000,
implying that the loop may run for billions of years before terminating.

In sharp contrast, the running times of the multiplication, division, and
square root algorithms that we present below depend not to the n-bit values
on which they are called to operate, which may be as large as 2n, but rather
on n, the number of their bits. When it comes to efficiency of arithmetic
operations, that’s the best that we can possibly hope for.

We will use the Big-O notation, O (n), to describe a running time which
is “in the order of magnitude of n.” The running time of all the arithmetic
algorithms that we present in this chapter is O (n), where n is the bit width
of the inputs.

Multiplication

Consider the standard multiplication method taught in elementary school.
To compute 356 times 73, we line up the two numbers one on top of the
other, right-justified. Next, we multiply 356 by 3. Next, we shift 356 to the
left one position, and multiply 3560 by 7 (which is the same as multiplying
356 by 70). Finally, we sum up the columns and obtain the result. This
procedure is based on the insight that  The binary
version of this procedure is illustrated in figure 12.1, using another
example.



Figure 12.1    Multiplication algorithm.

Notation note: The algorithms presented in this chapter are written in a
self-explanatory pseudocode syntax. We use indentation to mark blocks of
code, obviating the need for curly brackets or begin/end keywords. For
example, in figure 12.1,  belongs to the single-statement
body of the if logic, and  ends the two-statement body of
the for logic.

Let’s inspect the multiplication procedure illustrated at the left of figure
12.1. For each i-th bit of y, we shift x i times to the left (same as multiplying
x by 2i). Next, we look at the i-th bit of y: If it is 1, we add the shifted x to
an accumulator; otherwise, we do nothing. The algorithm shown on the
right formalizes this procedure. Note that 2 * shiftedx can be computed
efficiently either by left-shifting the bitwise representation of shiftedx or by
adding shiftedx to itself. Either operation lends itself to primitive hardware
operations.

Running time: The multiplication algorithm performs n iterations, where n
is the bit width of the y input. In each iteration, the algorithm performs a
few addition and comparison operations. It follows that the total running
time of the algorithm is  where a is the time it takes to initialize a
few variables, and b is the time it takes to perform a few addition and
comparison operations. Formally, the algorithm’s running time is O (n),
where n is the bit width of the inputs.

To reiterate, the running time of this  algorithm does not depend on
the values of the x and y inputs; rather, it depends on the bit width of the
inputs. In computers, the bit width is normally a small fixed constant like 16
(short), 32 (int), or 64 (long), depending on the data types of the inputs. In the
Hack platform, the bit width of all data types is 16. If we assume that each
iteration of the multiplication algorithm entails about ten Hack machine
instructions, it follows that each multiplication operation will require at
most 160 clock cycles, irrespective of the size of the inputs. In contrast,
algorithms whose running time is proportional not to the bit width but
rather to the values of the inputs will require  clock cycles.



Division

The naïve way to compute the division of two n-bit numbers x / y is to
count how many times y can be subtracted from x until the remainder
becomes less than y. The running time of this algorithm is proportional to
the value of the dividend x and thus is unacceptably exponential in the
number of bits n.

To speed things up, we can try to subtract large chunks of y’s from x in
each iteration. For example, suppose we have to divide 175 by 3. We start
by asking: What is the largest number,  so that 

 The answer is 50. In other words, we managed to subtract fifty 3’s
from 175, shaving fifty iterations from the naïve approach. This accelerated
subtraction leaves a remainder of  Moving along, we now ask:
What is the largest number,  so that  The answer is
8, so we managed to make eight additional subtractions of 3, and the
answer, so far, is The remainder is  which is less than 3,
so we stop the process and announce that  with a remainder of 1.

This technique is the rationale behind the dreaded school procedure
known as long division. The binary version of this algorithm is identical,
except that instead of accelerating the subtraction using powers of 10 we
use powers of 2. The algorithm performs n iterations, n being the number of
digits in the dividend, and each iteration entails a few multiplication
(actually, shifting), comparison, and subtraction operations. Once again, we
have an algorithm whose running time does not depend on the values of
x and y. Rather, the running time is O (n), where n is the bit width of the
inputs.

Writing down this algorithm as we have done for multiplication is an
easy exercise. To make things interesting, figure 12.2 presents another
division algorithm which is as efficient, but more elegant and easier to
implement.



Figure 12.2    Division algorithm.

Suppose we have to divide 480 by 17. The algorithm shown in figure
12.2 is based on the insight 

 and so on. The depth
of this recursion is bounded by the number of times y can be multiplied by 2
before reaching x. This also happens to be, at most, the number of bits
required to represent x. Thus, the running time of this algorithm is O (n),
where n is the bit width of the inputs.

One snag in this algorithm is that each multiplication operation also
requires O (n) operations. However, an inspection of the algorithm’s logic
reveals that the value of the expression  can be computed without
multiplication. Instead, it can be obtained from its value in the previous
recursion level, using addition.



Square Root

Square roots can be computed efficiently in a number of different ways, for
example, using the Newton-Raphson method or a Taylor series expansion.
For our purpose, though, a simpler algorithm will suffice. The square root
function  has two attractive properties. First, it is monotonically
increasing. Second, its inverse function,  is a function that we already
know how to compute efficiently—multiplication. Taken together, these
properties imply that we have all we need to compute square roots
efficiently, using a form of binary search. Figure 12.3 gives the details.

Figure 12.3    Square root algorithm.

Since the number of iterations in the binary search that the algorithm
performs is bound by n / 2 where n is the number of bits in x, the
algorithm’s running time is O (n).

To sum up this section about mathematical operations, we presented
algorithms for computing multiplication, division, and square root. The
running time of each of the algorithms is O (n), where n is the bit width of
the inputs. We also observed that in computers, n is a small constant like 16,
32, or 64. Therefore, every addition, subtraction, multiplication, and
division operation can be carried out swiftly, in a predictable time that is
unaffected by the magnitude of the inputs.

12.1.2    Strings



In addition to primitive data types, most programming languages feature a
string type designed to represent sequences of characters like "Loading game
…" and "QUIT". Typically, the string abstraction is supplied by a String class
that is part of the standard class library that supports the language. This is
also the approach taken by Jack.

All the string constants that appear in Jack programs are implemented as
String objects. The String class, whose API is documented in appendix 6,
features various string processing methods like appending a character to the
string, deleting the last character, and so on. These services are not difficult
to implement, as we’ll describe later in the chapter. The more challenging
String methods are those that convert integer values to strings and strings of
digit characters to integer values. We now turn to discuss algorithms that
carry out these operations.

String representation of numbers: Computers represent numbers
internally using binary codes. Yet humans are used to dealing with numbers
that are written in decimal notation. Thus, when humans have to read or
input numbers, and only then, a conversion to or from decimal notation
must be performed. When such numbers are captured from an input device
like a keyboard, or rendered on an output device like a screen, they are cast
as strings of characters, each representing one of the digits 0 to 9. The
subset of relevant characters is:

(The complete Hack character set is given in appendix 5). We see that digit
characters can be easily converted into the integers that they represent, and
vice versa. The integer value of character c, where  is 
Conversely, the character code of the integer x, where  is 

Once we know how to handle single-digit characters, we can develop
algorithms for converting any integer into a string and any string of digit
characters into the corresponding integer. These conversion algorithms can
be based on either iterative or recursive logic, so figure 12.4 presents one of
each.



Figure 12.4    String-integer conversions. (appendChar, length, and charAt are String class
methods.)

It is easy to infer from figure 12.4 that the running times of the int2String
and string2Int algorithms are O (n), where n is the number of the digit-
characters in the input.

12.1.3    Memory Management

Each time a program creates a new array or a new object, a memory block
of a certain size must be allocated for representing the new array or object.
And when the array or object is no longer needed, its RAM space may be
recycled. These chores are done by two classical OS functions called alloc
and deAlloc. These functions are used by compilers when generating low-
level code for handling constructors and destructors, as well as by high-
level programmers, as needed.

The memory blocks for representing arrays and objects are carved from,
and recycled back into, a designated RAM area called a heap. The agent
responsible for managing this resource is the operating system. When the
OS starts running, it initializes a pointer named heapBase, containing the
heap’s base address in the RAM (in Jack, the heap starts just after the
stack’s end, with  We’ll present two heap management
algorithms: basic and improved.

Memory allocation algorithm (basic): The data structure that this
algorithm manages is a single pointer, named free, which points to the
beginning of the heap segment that was not yet allocated. See figure 12.5a
for the details.



Figure 12.5a    Memory allocation algorithm (basic).

The basic heap management scheme is clearly wasteful, as it never
reclaims any memory space. But, if your application programs use only a
few small objects and arrays, and not too many strings, you may get away
with it.

Memory allocation algorithm (improved): This algorithm manages a
linked list of available memory segments, called freeList (see figure 12.5b).
Each segment in the list begins with two housekeeping fields: the segment’s
length and a pointer to the next segment in the list.



Figure 12.5b    Memory allocation algorithm (improved).

When asked to allocate a memory block of a given size, the algorithm
has to search the freeList for a suitable segment. There are two heuristics for
doing this search. Best-fit finds the shortest segment that is long enough for
representing the required size, while first-fit finds the first segment that is
long enough. Once a suitable segment has been found, the required memory
block is carved from it (the location just before the beginning of the
returned block, block[−1], is reserved to hold its length, to be used during
deallocation).

Next, the length of this segment is updated in the freeList, reflecting the
length of the part that remained after the allocation. If no memory was left



in the segment, or if the remaining part is practically too small, the entire
segment is eliminated from the freeList.

When asked to reclaim the memory block of an unused object, the
algorithm appends the deallocated block to the end of the freeList.

Dynamic memory allocation algorithms like the one shown in figure
12.5b may create block fragmentation problems. Hence, a defragmentation
operation should be considered, that is, merging memory areas that are
physically adjacent in memory but logically split into different segments in
the freeList. The defragmentation can be done each time an object is
deallocated, when alloc() fails to find a block of the requested size, or
according to some other, periodical ad hoc condition.

Peek and poke: We end the discussion of memory management with two
simple OS functions that have nothing to do with resource allocation.
Memory.peek(addr) returns the value of the RAM at address addr, and
Memory.poke(addr,value) sets the word in RAM address addr to value. These
functions play a role in various OS services that manipulate the memory,
including graphics routines, as we now turn to discuss.

12.1.4    Graphical Output

Modern computers render graphical output like animation and video on
high-resolution color screens, using optimized graphics drivers and
dedicated graphical processing units (GPUs). In Nand to Tetris we abstract
away most of this complexity, focusing instead on fundamental graphics-
drawing algorithms and techniques.

We assume that the computer is connected to a physical black-and-white
screen arranged as a grid of rows and columns, and at the intersection of
each lies a pixel. By convention, the columns are numbered from left to
right and the rows are numbered from top to bottom. Thus pixel (0,0) is
located at the screen’s top-left corner.

We assume that the screen is connected to the computer system through a
memory map—a dedicated RAM area in which each pixel is represented by
one bit. The screen is refreshed from this memory map many times per
second by a process that is external to the computer. Programs that simulate
the computer’s operations are expected to emulate this refresh process.



The most basic operation that can be performed on the screen is drawing
an individual pixel specified by (x,y) coordinates. This is done by turning
the corresponding bit in the memory map on or off. Other operations like
drawing a line and drawing a circle are built on top of this basic operation.
The graphics package maintains a current color that can be set to black or
white. All the drawing operations use the current color.

Pixel drawing (drawPixel): Drawing a selected pixel in screen location (x,y)
is achieved by locating the corresponding bit in the memory map and
setting it to the current color. Since the RAM is an n-bit device, this
operation requires reading and writing an n-bit value. See figure 12.6.

Figure 12.6    Drawing a pixel.

The memory map interface of the Hack screen is specified in section
5.2.4. This mapping should be used in order to realize the drawPixel
algorithm.

Line drawing (drawLine): When asked to render a continuous “line”
between two “points” on a grid made of discrete pixels, the best that we can
possibly do is approximate the line by drawing a series of pixels along the
imaginary line connecting the two points. The “pen” that we use for
drawing the line can move in four directions only: up, down, left, and right.



Thus, the drawn line is bound to be jagged, and the only way to make it
look good is to use a high-resolution screen with the tiniest possible pixels.
Note, though, that the human eye, being yet another machine, also has a
limited image-capturing capacity, determined by the number and type of
receptor cells in the retina. Thus, high-resolution screens can fool the
human brain to believe that the lines made of pixels are visibly smooth. In
fact they are always jagged.

The procedure for drawing a line from (x1,y1) to (x2,y2) starts by
drawing the (x1,y1) pixel and then zigzagging in the direction of (x2,y2)
until that pixel is reached. See figure 12.7.

Figure 12.7    Line-drawing algorithm: basic version (bottom, left) and improved version (bottom,
right).

The use of two division operations in each loop iteration makes this
algorithm neither efficient nor accurate. The first obvious improvement is
replacing the  condition with the equivalent  which
requires only integer multiplication. Careful inspection of the latter
condition reveals that it may be checked without any multiplication. As
shown in the improved algorithm in figure 12.7, this may be done



efficiently by maintaining a variable that updates the value of 
each time a or b is incremented.

The running time of this line-drawing algorithm is O(n), where n is the
number of pixels along the drawn line. The algorithm uses only addition
and subtraction operations and can be implemented efficiently in either
software or hardware.

Circle drawing (drawCircle): Figure 12.8 presents an algorithm that uses
three routines that we’ve already implemented: multiplication, square root,
and line drawing.

Figure 12.8    Circle-drawing algorithm.



The algorithm is based on drawing a sequence of horizontal lines (like
the typical line ab in the figure), one for each row in the range 
Since r is specified in pixels, the algorithm ends up drawing a line in every
row along the circle’s north-south diameter, resulting in a completely filled
circle. A simple tweak can cause this algorithm to draw only the circle’s
outline, if so desired.

12.1.5    Character Output

To develop a capability for displaying characters, we first turn our physical,
pixel-oriented screen into a logical, character-oriented screen suitable for
rendering fixed, bitmapped images that represent characters. For example,
consider a physical screen that features 256 rows of 512 pixels each. If we
allocate a grid of 11 rows by 8 columns for drawing a single character, then
our screen can display 23 lines of 64 characters each, with 3 extra rows of
pixels left unused.

Fonts: The character sets that computers use are divided into printable and
non-printable subsets. For each printable character in the Hack character set
(see appendix 5), an 11-row-by-8-column bitmap image was designed, to
the best of our limited artistic abilities. Taken together, these images are
called a font. Figure 12.9 shows how our font renders the uppercase letter N.
To handle character spacing, each character image includes at least a 1-pixel
space before the next character in the row and at least a 1-pixel space
between adjacent rows (the exact spacing varies with the size and squiggles
of individual characters). The Hack font consists of ninety-five such bitmap
images, one for each printable character in the Hack character set.



Figure 12.9    Example of a character bitmap.

Font design is an ancient yet vibrant art. The oldest fonts are as old as the
art of writing, and new ones are routinely introduced by type designers who
wish to make an artistic statement or solve a technical or functional
objective. In our case, the small physical screen, on the one hand, and the
wish to display a reasonable number of characters in each row, on the other,
led to the pragmatic choice of a frugal image area of  pixels. This
economy forced us to design a crude font, which nonetheless serves its
purpose well.



Cursor: Characters are usually displayed one after the other, from left to
right, until the end of the line is reached. For example, consider a program
in which the statement print("a") is followed (perhaps not immediately) by the
statement print ("b"). This implies that the program wants to display ab on the
screen. To effect this continuity, the character-writing package maintains a
global cursor that keeps track of the screen location where the next
character should be drawn. The cursor information consists of column and
row counts, say, cursor.col and cursor.row. After a character has been
displayed, we do cursor.col++. At the end of the row we do cursor.row++ and
cursor.col = 0. When the bottom of the screen is reached, there is a question
of what to do next. Two possible actions are effecting a scrolling operation
or clearing the screen and starting over by setting the cursor to (0,0).

To recap, we described a scheme for writing individual characters on the
screen. Writing other types of data follows naturally from this basic
capability: strings are written character by character, and numbers are first
converted to strings and then written as strings.

12.1.6    Keyboard Input

Capturing inputs that come from the keyboard is more intricate than meets
the eye. For example, consider the statement let name =
Keyboard.readLine("enter your name:"). By definition, the execution of the readLine
function depends on the dexterity and collaboration of an unpredictable
entity: a human user. The function will not terminate until the user has
pressed some keys on the keyboard, ending with an ENTER. The problem is
that humans press and release keyboard keys for variable and unpredictable
durations of time, and often take a coffee break in the middle. Also, humans
are fond of backspacing, deleting, and retyping characters. The
implementation of the readLine function must handle all these irregularities.

This section describes how keyboard input is managed, in three levels of
abstraction: (i) detecting which key is currently pressed on the keyboard,
(ii) capturing a single-character input, and (iii) capturing a multicharacter
input.

Detecting keyboard input (keyPressed): Detecting which key is presently
pressed is a hardware-specific operation that depends on the keyboard



interface. In the Hack computer, the keyboard continuously refreshes a 16-
bit memory register whose address is kept in a pointer named KBD. The
interaction contract is as follows: If a key is currently pressed on the
keyboard, that address contains the key’s character code (the Hack character
set is given in appendix 5); otherwise, it contains 0. This contract is used for
implementing the keyPressed function shown in figure 12.10.

Figure 12.10    Handling input from the keyboard.

Reading a single character (readChar): The elapsed time between the key
pressed and the subsequent key released events is unpredictable. Hence, we
have to write code that neutralizes this uncertainty. Also, when users press
keys on the keyboard, we want to give feedback as to which keys have been
pressed (something that you have probably grown to take for granted).
Typically, we want to display some graphical cursor at the screen location
where the next input goes, and, after some key has been pressed, we want to
echo the inputted character by displaying its bitmap on the screen at the
cursor location. All these actions are implemented by the readChar function.

Reading a string (readLine): A multicharacter input typed by the user is
considered final after the ENTER key has been pressed, yielding the newLine
character. Until the ENTER key is pressed, the user should be allowed to



backspace, delete, and retype previously typed characters. All these actions
are accommodated by the readLine function.

As usual, our input-handling solutions are based on a cascading series of
abstractions: The high-level program relies on the readLine abstraction,
which relies on the readChar abstraction, which relies on the keyPressed
abstraction, which relies on the Memory.peek abstraction, which relies on the
hardware.

12.2    The Jack OS Specification

The previous section presented algorithms that address various classical
operating system tasks. In this section we turn to formally specify one
particular operating system—the Jack OS. The Jack operating system is
organized in eight classes:

Math: provides mathematical operations
String: implements the String type
Array: implements the Array type
Memory: handles memory operations
Screen: handles graphics output to the screen
Output: handles character output to the screen
Keyboard: handles input from the keyboard
Sys: provides execution-related services

The complete OS API is given in appendix 6. This API can be viewed as
the OS specification. The next section describes how this API can be
implemented using the algorithms presented in the previous section.

12.3    Implementation

Each OS class is a collection of subroutines (constructors, functions, and
methods). Most of the OS subroutines are simple to implement and are not
discussed here. The remaining OS subroutines are based on the algorithms



presented in section 12.2. The implementation of these subroutines can
benefit from some tips and guidelines, which we now turn to present.

Init functions: Some OS classes use data structures that support the
implementation of some of their subroutines. For each such OSClass, these
data structures can be declared statically at the class level and initialized by
a fucntion which, by convention, we call OSClass.init. The init functions are
for internal purposes and are not documented in the OS API.

Math

multiply: In each iteration i of the multiplication algorithm (see figure 12.1),
the i-th bit of the second multiplicand is extracted. We suggest
encapsulating this operation in a helper function bit (x,i) that returns true if the
i-th bit of the integer x is 1, and false otherwise. The bit(x,i) function can be
easily implemented using shifting operations. Alas, Jack does not support
shifting. Instead, it may be convenient to define a fixed static array of
length 16, say twoToThe, and set each element i to 2 raised to the power of i.
The array can then be used to support the implementation of bit (x,i). The
twoToThe array can be built by the Math.init function.

divide: The multiplication and division algorithms presented in figures 12.1
and 12.2 are designed to operate on nonnegative integers. Signed numbers
can be handled by applying the algorithms to absolute values and setting the
sign of the return values appropriately. For the multiplication algorithm, this
is not needed: since the multiplicands are given in two’s complement, their
product will be correct with no further ado.

In the division algorithm, y is multiplied by a factor of 2, until y > x. Thus
y can overflow. The overflow can be detected by checking when y becomes
negative.

sqrt: In the square root algorithm (figure 12.3), the calculation of 
can overflow, resulting in an abnormally negative result. This problem can
be addressed by changing efficiently the algorithm’s if logic to: if 

 and  then .

String



All the string constants that appear in a Jack program are realized as objects
of the String class, whose API is documented in appendix 6. Specifically,
each string is implemented as an object consisting of an array of char values,
a maxLength property that holds the maximum length of the string, and a
length property that holds the actual length of the string.

For example, consider the statement  When the compiler
handles this statement, it calls the String constructor, which creates a char
array with  and  If we later call the String method
str.eraseLastChar(), the length of the array will become 5, and the string will
effectively become "scoob". In general, then, array elements beyond length are
not considered part of the string.

What should happen when an attempt is made to add a character to a
string whose length equals maxLength? This issue is not defined by the OS
specification: the String class may act gracefully and resize the array—or
not; this is left to the discretion of individual OS implementations.

intValue, setInt: These subroutines can be implemented using the algorithms
presented in figure 12.4. Note that neither algorithm handles negative
numbers—a detail that must be handled by the implementation.

newLine, backSpace, doubleQuote: As seen in appendix 5, the codes of these
characters are 128, 129, and 34.

The remaining String methods can be implemented straightforwardly by
operating on the char array and on the length field that characterizes each
String object.

Array

new: In spite of its name, this subroutine is not a constructor but rather a
function. Therefore, the implementation of this function must allocate
memory space for the new array by explicitly calling the OS function
Memory.alloc.

dispose: This void method is called by statements like do arr.dispose(). The
dispose implementation deallocates the array by calling the OS function
Memory.deAlloc.



Memory

peek, poke: These functions provide direct access to the host memory. How
can this low-level access be accomplished using the Jack high-level
language? As it turns out, the Jack language includes a trapdoor that enables
gaining complete control of the host computer’s memory. This trapdoor can
be exploited for implementing Memory.peek and Memory.poke using plain Jack
programming.

The trick is based on an anomalous use of a reference variable (pointer).
Jack is a weakly typed language; among other quirks, it does not prevent
the programmer from assigning a constant to a reference variable. This
constant can then be treated as an absolute memory address. When the
reference variable happens to be an array, this scheme provides indexed
access to every word in the host RAM. See figure 12.11.

Figure 12.11    A trapdoor enabling complete control of the host RAM from Jack.

Following the first two lines of code, the base of the memory array points
to the first address in the computer’s RAM (address 0). To get or set the
value of the RAM location whose physical address is i, all we have to do is



manipulate the array element memory[i]. This will cause the compiler to
manipulate the RAM location whose address is  which is what we want.

Jack arrays are not allocated space on the heap at compile-time but rather
at run-time, if and when the array’s new function is called. Note that if new
were a constructor and not a function, the compiler and the OS would have
allocated the new array to some obscure address in the RAM that we cannot
control. Like many classical hacks, this trick works because we use the
array variable without initializing it properly, as is normally done when
using arrays.

The memory array can be declared at the class level and initialized by the
Memory.init function. Once this hack is done, the implementation of
Memory.peek and Memory.poke becomes trivial.

alloc, deAlloc: These functions can be implemented by either one of the
algorithms shown in figures 12.5a and 12.5b. Either best-fit or first-fit can
be used for implementing Memory.deAlloc.

The standard VM mapping on the Hack platform (see section 7.4.1)
specifies that the stack be mapped on RAM addresses 256 to 2047. Thus the
heap can start at address 2048.

In order to realize the freeList linked list, the Memory class can declare and
maintain a static variable, freeList, as seen in figure 12.12. Although freeList is
initialized to the value of heapBase (2048), it is possible that following
several alloc and deAlloc operations freeList will become some other address in
memory, as illustrated in the figure.



Figure 12.12    Logical view (left) and physical implementation (right) of a linked list that supports
dynamic memory allocation.

For efficiency’s sake, it is recommended to write Jack code that manages
the freeList linked list directly in the RAM, as seen in figure 12.12. The
linked list can be initialized by the Memory.init function.

Screen

The Screen class maintains a current color that is used by all the drawing
functions of the class. The current color can be represented by a static
Boolean variable.

drawPixel: Drawing a pixel on the screen can be done using Memory.peek and
Memory.poke. The screen memory map of the Hack platform specifies that the
pixel at column col and row row  is mapped to the
col % 16 bit of memory location  Drawing a single
pixel requires changing a single bit in the accessed word (and that bit only).



drawLine: The basic algorithm in figure 12.7 can potentially lead to
overflow. However, the algorithm’s improved version eliminates the
problem.

Some aspects of the algorithm should be generalized for drawing lines
that extend to four possible directions. Be reminded that the screen origin
(coordinates (0,0)) is at the top-left corner. Therefore, some of the
directions and plus/minus operations specified in the algorithm should be
modified by your drawLine implementation.

The special yet frequent cases of drawing straight lines, that is, when 
 or should not be handled by this algorithm. Rather, they should

benefit from a separate and optimized implementation.

drawCircle: The algorithm shown in figure 12.8 can potentially lead to
overflow. Limiting circle radii to be at most 181 is a reasonable solution.

Output

The Output class is a library of functions for displaying characters. The class
assumes a character-oriented screen consisting of 23 rows (indexed 0 … 22,
top to bottom) of 64 characters each (indexed 0 … 63, left to right). The
top-left character location on the screen is indexed (0,0). A visible cursor,
implemented as a small filled square, indicates where the next character
will be displayed. Each character is displayed by rendering on the screen a
rectangular image, 11 pixels high and 8 pixels wide (which includes
margins for character spacing and line spacing). The collection of all the
character images is called a font.

Font implementation: The design and implementation of a font for the
Hack character set (appendix 5) is a drudgery, combining artistic judgment
and rote implementation work. The resulting font is a collection of ninety-
five rectangular bitmap images, each representing a printable character.

Fonts are normally stored in external files that are loaded and used by the
character-drawing package, as needed. In Nand to Tetris, the font is
embedded in the OS Output class. For each printable character, we define an
array that holds the character’s bitmap. The array consists of 11 elements,
each corresponding to a row of 8 pixels. Specifically, we set the value of



each array entry j to an integer value whose binary representation (bits)
codes the 8 pixels appearing in the j-th row of the character’s bitmap. We
also define a static array of size 127, whose index values 32 … 126
correspond to the codes of the printable characters in the Hack character set
(entries 0 … 31 are not used). We then set each array entry i of that array to
the 11-entry array that represents the bitmap image of the character whose
character code is i (did we mention drudgery?).

The project 12 materials include a skeletal Output class containing Jack
code that carries out all the implementation work described above. The
given code implements the ninety-five-character font, except for one
character, whose design and implementation is left as an exercise. This code
can be activated by the Output.init function, which can also initialize the
cursor.

printChar: Displays the character at the cursor location and advances the
cursor one column forward. To display a character at location (row,col),
where  we write the character’s bitmap onto the box
of pixels ranging from  and from 

printString: Can be implemented using a sequence of printChar calls.

printInt: Can be implemented by converting the integer to a string and then
printing the string.

Keyboard

The Hack computer memory organization (see section 5.2.6) specifies that
the keyboard memory map is a single 16-bit memory register located at
address 24576.

keyPressed: Can be implemented easily using Memory.peek ().

readChar, readString: Can be implemented by following the algorithms in
figure 12.10.

readInt: Can be implemented by reading a string and converting it into an int
value using a String method.



Sys

wait: This function is supposed to wait a given number of milliseconds and
return. It can be implemented by writing a loop that runs approximately
duration milliseconds before terminating. You will have to time your specific
computer to obtain a one millisecond wait, as this constant varies from one
CPU to another. As a result, your Sys.wait() function will not be portable. The
function can be made portable by running yet another configuration
function that sets various constants reflecting the hardware specifications of
the host platform, but for Nand to Tetris this is not needed.

halt: Can be implemented by entering an infinite loop.

init: According to the Jack language specification (see section 9.2.2), a Jack
program is a set of one or more classes. One class must be named Main, and
this class must include a function named main. To start running a program,
the Main.main function should be called.

The operating system is also a collection of compiled Jack classes. When
the computer boots up, we want to start running the operating system and
have it start running the main program. This chain of command is
implemented as follows. According to the Standard VM Mapping on the
Hack Platform (section 8.5.2), the VM translator writes bootstrap code (in
machine language) that calls the OS function Sys.init. This bootstrap code is
stored in the ROM, starting at address 0. When we reset the computer, the
program counter is set to 0, the bootstrap code starts running, and the Sys.init
function is called.

With that in mind, Sys.init should do two things: call all the init functions of
the other OS classes, and then call Main.main.

From this point onward the user is at the mercy of the application
program, and the Nand to Tetris journey has come to an end. We hope that
you enjoyed the ride!

12.4    Project

Objective: Implement the operating system described in the chapter.



Contract: Implement the operating system in Jack, and test it using the
programs and testing scenarios described below. Each test program uses a
subset of OS services. Each of the OS classes can be implemented and unit-
tested in isolation, in any order.

Resources: The main required tool is Jack—the language in which you will
develop the OS. You will also need the supplied Jack compiler for
compiling your OS implementation, as well as the supplied test programs,
also written in Jack. Finally, you’ll need the supplied VM emulator, which
is the platform on which the tests will be executed.

Your projects/12 folder includes eight skeletal OS class files named
Math.jack, String.jack, Array.jack, Memory.jack, Screen.jack, Output.jack, Keyboard.jack,
and Sys.jack. Each file contains the signatures of all the class subroutines.
Your task is completing the missing implementations.

The VM emulator: Operating system developers often face the following
chicken-and-egg dilemma: How can we possibly test an OS class in
isolation, if the class uses the services of other OS classes not yet
developed? As it turns out, the VM emulator is perfectly positioned to
support unit-testing the OS, one class at a time.

Specifically, the VM emulator features an executable version of the OS,
written in Java. When a VM command call foo is found in the loaded VM
code, the emulator proceeds as follows. If a VM function named foo exists
in the loaded code base, the emulator executes its VM code. Otherwise, the
emulator checks whether foo is one of the built-on OS functions. If so, it
executes foo’s built-in implementation. This convention is ideally suited for
supporting the testing strategy that we now turn to describe.

Testing Plan

Your projects/12 folder includes eight test folders, named MathTest, MemoryTest,
…, for testing each one the eight OS classes Math, Memory, …. Each folder
contains a Jack program, designed to test (by using) the services of the
corresponding OS class. Some folders contain test scripts and compare



files, and some contain only a .jack file or files. To test your implementation
of the OS class Xxx.jack, you may proceed as follows:

Inspect the supplied XxxTest/*.jack code of the test program. Understand
which OS services are tested and how they are tested.
Put the OS class Xxx.jack that you developed in the XxxTest folder.
Compile the folder using the supplied Jack compiler. This will result in
translating both your OS class file and the .jack file or files of the test
program into corresponding .vm files, stored in the same folder.
If the folder includes a .tst test script, load the script into the VM emulator;
otherwise, load the folder into the VM emulator.
Follow the specific testing guidelines given below for each OS class.

Memory, Array, Math: The three folders that test these classes include test
scripts and compare files. Each test script begins with the command load.
This command loads all the .vm files in the current folder into the VM
emulator. The next two commands in each test script create an output file
and load the supplied compare file. Next, the test script proceeds to execute
several tests, comparing the test results to those listed in the compare file.
Your job is making sure that these comparisons end successfully.

Note that the supplied test programs don’t comprise a full test of
Memory.alloc and Memory.deAlloc. A complete test of these memory
management functions requires inspecting internal implementation details
not visible in user-level testing. If you want to do so, you can test these
functions by using step-by-step debugging and by inspecting the state of the
host RAM.

String: Execution of the supplied test program should yield the following
output:



Output: Execution of the supplied test program should yield the following
output:

Screen: Execution of the supplied test program should yield the following
output:



Keyboard: This OS class is tested by a test program that effects user-program
interaction. For each function in the Keyboard class (keyPressed, readChar,
readLine, readInt) the program prompts the user to press some keys. If the OS
function is implemented correctly and the requested keys are pressed, the
program prints ok and proceeds to test the next OS function. Otherwise, the
program repeats the request. If all requests end successfully, the program
prints Test ended successfully. At this point the screen should show the
following output:

Sys



The supplied .jack file tests the Sys.wait function. The program requests the
user to press a key (any key) and waits two seconds, using a call to Sys.wait.
It then prints a message on the screen. Make sure that the time that elapses
between your release of the key and the appearance of the printed message
is about two seconds.

The Sys.init function is not tested explicitly. However, recall that it
performs all the necessary OS initializations and then calls the Main.main
function of each test program. Therefore, we can assume that nothing will
work properly unless Sys.init is implemented correctly.

Complete Test

After testing successfully each OS class in isolation, test your entire OS
implementation using the Pong game introduced earlier in the book. The
source code of Pong is available in projects/11/Pong. Put your eight OS .jack
files in the Pong folder, and compile the folder using the supplied Jack
compiler. Next, load the Pong folder into the VM emulator, execute the
game, and ensure that it works as expected.

12.5    Perspective

This chapter presented a subset of basic services that can be found in most
operating systems. For example, managing memory, driving I/O devices,
supplying mathematical operations not implemented in hardware, and
implementing abstract data types like the string abstraction. We have
chosen to call this standard software library an operating system to reflect
its two main functions: encapsulating the gory hardware details, omissions,
and idiosyncrasies in transparent software services, and enabling compilers
and application programs to use these services via clean interfaces.
However, the gap between what we have called an OS and industrial-
strength operating systems remains wide.

For starters, our OS lacks some of the basic services most closely
associated with operating systems. For example, our OS supports neither
multi-threading nor multiprocessing; in contrast, the kernel of most



operating systems is devoted to exactly that. Our OS supports no mass
storage devices; in contrast, the main data store handled by operating
systems is a file system abstraction. Our OS features neither a command-
line interface (as in a Unix shell) nor a graphical interface consisting of
windows and menus. In contrast, this is the operating system interface that
users expect to see and interact with. Numerous other services commonly
found in operating systems are not present in our OS, like security,
communication, and more.

Another notable difference lies in the liberal way in which our OS
operations are invoked. Some OS operations, for example, peek and poke,
give the programmer complete access to the host computer resources.
Clearly, inadvertent or malicious use of such functions can cause havoc.
Therefore, many OS services are considered privileged, and accessing them
requires a security mechanism that is more elaborate than a simple function
call. In contrast, in the Hack platform, there is no difference between OS
code and user code, and operating system services run in the same user
mode as that of application programs.

In terms of efficiency, the algorithms that we presented for multiplication
and division were standard. These algorithms, or variants thereof, are
typically implemented in hardware rather than in software. The running
time of these algorithms is O (n) addition operations. Since adding two n-bit
numbers requires O (n) bit operations (gates in hardware), these algorithms
end up requiring O (n2) bit operations. There exist multiplication and
division algorithms whose running time is asymptotically significantly
faster than O (n2), and for a large number of bits these algorithms are more
efficient. In a similar fashion, optimized versions of the geometric
operations that we presented, like line drawing and circle drawing, are often
implemented in special graphics-acceleration hardware.

Like every hardware and software system developed in Nand to Tetris,
our goal is not to provide a complete solution that addresses all wants and
needs. Rather, we strive to build a working implementation and a solid
understanding of the system’s foundation, and then propose ways to extend
it further. Some of these optional extension projects are mentioned in the
next and final chapter in the book.



 

13     More Fun to Go

We shall not cease from exploration, and at the end we will arrive where we started, and know the
place for the first time.

—T. S. Eliot (1888–1965)

Congratulations! We’ve finished the construction of a complete computing
system, starting from first principles. We hope that you enjoyed this
journey. Let us, the authors of this book, share a secret with you: We
suspect that we enjoyed writing the book even more. After all, we got to
design this computing system, and design is often the “funnest” part of
every project. We are sure that some of you, adventurous learners, would
like to get in on that design action. Maybe you would like to improve the
architecture; maybe you have ideas for adding new features here and there;
maybe you envision a wider system. And then, maybe, you want to be in
the navigator’s seat and decide where to go, not just how to get there.

Almost every aspect of the Jack/Hack system can be improved,
optimized, or extended. For example, the assembly language, the Jack
language, and the operating system can be modified and extended by
rewriting portions of your respective assembler, compiler, and OS
implementations. Other changes would likely require modifying the
supplied software tools as well. For example, if you change the hardware
specification or the VM specification, then you would likely want to modify
the respective emulators. Or, if you want to add more input or output
devices to the Hack computer, you would probably need to model them by
writing new built-in chips.

In order to allow complete flexibility of modification and extension, we
made the source code of all the supplied tools publicly available. All our



code is 100 percent Java, except for some of the batch files used for starting
the software on some platforms. The software and its documentation are
available at www.nand2tetris.org. You are welcome to modify and extend
all our tools as you deem desirable for your latest idea—and then share
them with others, if you want. We hope that our code is written and
documented well enough to make modifications a satisfying experience. In
particular, we wish to mention that the supplied hardware simulator has a
simple and well-documented interface for adding new built-in chips. This
interface can be used for extending the simulated hardware platform with,
say, mass storage or communications devices.

While we cannot even start to imagine what your design improvements
may be, we can briefly sketch some of the ones we were thinking of.

Hardware Realizations

The hardware modules presented in the book were implemented either in
HDL or as supplied executable software modules. This, in fact, is how
hardware is actually designed. However, at some point, the HDL designs
are typically committed to silicon, becoming “real” computers. Wouldn’t it
be nice to make Hack or Jack run on a real hardware platform made of
atoms rather than bits?

Several different approaches may be taken toward this goal. On one
extreme, you can attempt to implement the Hack platform on an FPGA
board. This would require rewriting all the chip definitions using a
mainstream Hardware Description Language and then dealing with
implementation issues related to realizing the RAM, the ROM, and the I/O
devices on the host board. One such step-by-step optional project,
developed by Michael Schröder, is referred to in the www.nand2tetris.org
website. Another extreme approach may be to attempt emulating Hack, the
VM, or even the Jack platform on an existing hardware device like a cell
phone. It seems that any such project would want to reduce the size of the
Hack screen to keep the cost of the hardware resources reasonable.

Hardware Improvements

http://www.nand2tetris.org/
http://www.nand2tetris.org/


Although Hack is a stored program computer, the program that it runs must
be prestored in its ROM device. In the present Hack architecture, there is no
way of loading another program into the computer, except for simulating
the replacement of the entire physical ROM chip.

Adding a load program capability in a balanced way would likely
involve changes at several levels of the hierarchy. The Hack hardware
should be modified to allow loaded programs to reside in the writable RAM
rather than in the existing ROM. Some type of permanent storage, like a
built-in mass storage chip, should probably be added to the hardware to
allow storage of programs. The operating system should be extended to
handle this permanent storage device, as well as new logic for loading and
running programs. At this point an OS user interface shell would come in
handy, providing file and program management commands.

High-Level Languages

Like all professionals, programmers have strong feelings about their tools—
programming languages—and like to personalize them. And indeed, the
Jack language, which leaves much to be desired, can be significantly
improved. Some changes are simple, some are more involved, and some—
like adding inheritance—would likely require modifying the VM
specification as well.

Another option is realizing more high-level languages over the Hack
platform. For example, how about implementing Scheme?

Optimization

Our Nand to Tetris journey has almost completely sidestepped optimization
issues (except for the operating system, which introduced some efficiency
measures). Optimization is a great playfield for hackers. You can start with
local optimizations in the hardware, or in the compiler, but the best bang for
the buck will come from optimizing the VM translator. For example, you
may want to reduce the size of the generated assembly code, and make it



more efficient. Ambitious optimizations on a more global scale will involve
changing the specifications of the machine language or the VM language.

Communications

Wouldn’t it be nice to connect the Hack computer to the Internet? This
could be done by adding a built-in communication chip to the hardware and
writing an OS class for dealing with it and for handling higher-level
communication protocols. Some other programs would need to talk with the
built-in communication chip, providing an interface to the Internet. For
example, an HTTP-speaking web browser in Jack seems like a feasible and
worthy project.

These are some of our design itches—what are yours?



 

Appendix 1: Boolean Function
Synthesis

By logic we prove, by intuition we discover.
—Henri Poincaré (1854–1912)

In chapter 1 we made the following claims, without proof:

Given a truth table representation of a Boolean function, we can
synthesize from it a Boolean expression that realizes the function.
Any Boolean function can be expressed using only And, Or, and Not
operators.
Any Boolean function can be expressed using only Nand operators.

This appendix provides proofs for these claims, and shows that they are
interrelated. In addition, the appendix illustrates the process by which
Boolean expressions can be simplified using Boolean algebra.

A1.1    Boolean Algebra

The Boolean operators And, Or, and Not have useful algebraic properties.
We present some of these properties briefly, noting that their proofs can be
easily derived from the relevant truth tables listed in figure 1.1 of chapter 1.



These algebraic laws can be used to simplify Boolean functions. For
example, consider the function Not (Not (x) And Not (x Or y)). Can we
reduce it to a simpler form? Let’s try and see what we can come up with:

Boolean simplifications like the one just illustrated have significant
practical implications. For example, the original Boolean expression Not
(Not (x) And Not (x Or y)) can be implemented in hardware using five logic
gates, whereas the simplified expression x Or y can be implemented using a
single logic gate. Both expressions deliver the same functionality, but the
latter is five times more efficient in terms of cost, energy, and speed of
computation.

Reducing a Boolean expression into a simpler one is an art requiring
experience and insight. Various reduction tools and techniques are
available, but the problem remains challenging. In general, reducing a
Boolean expression into its simplest form is an NP-hard problem.



A1.2    Synthesizing Boolean Functions

Given a truth table of a Boolean function, how can we construct, or
synthesize, a Boolean expression that represents this function? And, come
to think of it, are we guaranteed that every Boolean function represented by
a truth table can also be represented by a Boolean expression?

These questions have very satisfying answers. First, yes: every Boolean
function can be represented by a Boolean expression. Moreover, there is a
constructive algorithm for doing just that. To illustrate, refer to figure A1.1,
and focus on its leftmost four columns. These columns specify a truth table
definition of some three-variable function f(x,y,z). Our goal is to synthesize
from these data a Boolean expression that represents this function.

Figure A1.1    Synthesizing a Boolean function from a truth table (example).

We’ll describe the synthesis algorithm by following its steps in this
particular example. We start by focusing only on the truth table’s rows in
which the function’s value is 1. In the function shown in figure A1.1, this
happens in rows 3, 5, and 7. For each such row i, we define a Boolean



function fi that returns 0 for all the variable values except for the variable
values in row i, for which the function returns 1. The truth table in figure
A1.1 yields three such functions, whose truth table definitions are listed in
the three rightmost columns in the table. Each of these functions fi can be
represented by a conjunction (And-ing) of three terms, one term for each
variable x, y, and z, each being either the variable or its negation, depending
on whether the value of this variable is 1 or 0 in row i. This construction
yields the three functions f3, f5, and f7, listed at the bottom of the table.
Since these functions describe the only cases in which the Boolean function
f evaluates to 1, we conclude that f can be represented by the Boolean
expression  Or  Or  Spelling it out: 

(Not (x) And y And Not (z)) Or (x And Not (y) And Not (z)) Or (x
And y And Not (z)).

Avoiding tedious formality, this example suggests that any Boolean
function can be systematically represented by a Boolean expression that has
a very specific structure: it is the disjunction (Or-ing) of all the conjunctive
(And-ing) functions fi whose construction was just described. This
expression, which is the Boolean version of a sum of products, is
sometimes referred to as the function’s disjunctive normal form (DNF).

Note that if the function has many variables, and thus the truth table has
exponentially many rows, the resulting DNF may be long and cumbersome.
At this point, Boolean algebra and various reduction techniques can help
transform the expression into a more efficient and workable representation.

A1.3    The Expressive Power of Nand

As our Nand to Tetris title suggests, every computer can be built using
nothing more than Nand gates. There are two ways to support this claim.
One is to actually build a computer from Nand gates only, which is exactly
what we do in part I of the book. Another way is to provide a formal proof,
which is what we’ll do next.

Lemma 1: Any Boolean function can be represented by a Boolean
expression containing only And, Or, and Not operators.



Proof: Any Boolean function can be used to generate a corresponding truth
table. And, as we’ve just shown, any truth table can be used for
synthesizing a DNF, which is an Or-ing of And-ings of variables and their
negations. It follows that any Boolean function can be represented by a
Boolean expression containing only And, Or, and And operators.

In order to appreciate the significance of this result, consider the infinite
number of functions that can be defined over integer numbers (rather than
binary numbers). It would have been nice if every such function could be
represented by an algebraic expression involving only addition,
multiplication, and negation. As it turns out, the vast majority of integer
functions, for example,  for  and  cannot be expressed
using a close algebraic form. In the world of binary numbers, though, due
to the finite number of values that each variable can assume (0 or 1), we do
have this attractive property that every Boolean function can be expressed
using nothing more than And, Or, and Not operators. The practical
implication is immense: any computer can be built from nothing more than
And, Or, and Not gates.

But, can we do better than this?

Lemma 2: Any Boolean function can be represented by a Boolean
expression containing only Not and And operators.

Proof: According to De Morgan law, the Or operator can be expressed using
the Not and And operators. Combining this result with Lemma 1, we get the
proof.

Pushing our luck further, can we do better than this?

Theorem: Any Boolean function can be represented by a Boolean
expression containing only Nand operators.

Proof: An inspection of the Nand truth table (the second-to-last row in
figure 1.2 in chapter 1) reveals the following two properties:

Not (x) = Nand (x, x)
In words: If you set both the x and y variables of the Nand function to

the same value (0 or 1), the function evaluates to the negation of that



value.
And (x, y) = Not (Nand (x, y))

It is easy to show that the truth tables of both sides of the equation are
identical. And, we’ve just shown that Not can be expressed using Nand.

Combining these two results with Lemma 2, we get that any Boolean
function can be represented by a Boolean expression containing only Nand
operators.

This remarkable result, which may well be called the fundamental
theorem of logic design, stipulates that computers can be built from one
atom only: a logic gate that realizes the Nand function. In other words, if
we have as many Nand gates as we want, we can wire them in patterns of
activation that implement any given Boolean function: all we have to do is
figure out the right wiring.

Indeed, most computers today are based on hardware infrastructures
consisting of billions of Nand gates (or Nor gates, which have similar
generative properties). In practice, though, we don’t have to limit ourselves
to Nand gates only. If electrical engineers and physicists can come up with
efficient and low-cost physical implementations of other elementary logic
gates, we will happily use them directly as primitive building blocks. This
pragmatic observation does not take away anything from the theorem’s
importance.



 

Appendix 2: Hardware Description
Language

Intelligence is the faculty of making artificial objects, especially tools to make tools.
—Henry Bergson (1859–1941)

This appendix has two main parts. Sections A2.1–A2.5 describe the HDL
language used in the book and in the projects. Section A2.6, named HDL
Survival Guide, provides a set of essential tips for completing the hardware
projects successfully.

A Hardware Description Language (HDL) is a formalism for defining
chips: objects whose interfaces consist of input and output pins that carry
binary signals, and whose implementations are connected arrangements of
other, lower-level chips. This appendix describes the HDL that we use in
Nand to Tetris. Chapter 1 (in particular, section 1.3) provides essential
background that is a prerequisite to this appendix.

A2.1    HDL Basics

The HDL used in Nand to Tetris is a simple language, and the best way to
learn it is to play with HDL programs using the supplied hardware
simulator. We recommend starting to experiment as soon as you can,
beginning with the following example.

Example: Suppose we have to check whether three 1-bit variables a, b, c
have the same value. One way to check this three-way equality is to
evaluate the Boolean function . Noting that the binary



operator not-equal can be realized using a Xor gate, we can implement this
function using the HDL program shown in figure A2.1.

Figure A2.1    HDL program example.

The Eq3.hdl implementation uses four chip-parts: two Xor gates, one Or
gate, and one Not gate. To realize the logic expressed by ,
the HDL programmer connects the chip-parts by creating, and naming,
three internal pins: neq1, neq2, and outOr.

Unlike internal pins, which can be created and named at will, the HDL
programmer has no control over the names of the input and output pins.
These are normally supplied by the chips’ architects and documented in
given APIs. For example, in Nand to Tetris, we provide stub files for all the
chips that you have to implement. Each stub file contains the chip interface,
with a missing implementation. The contract is as follows: You are allowed
to do whatever you want under the PARTS statement; you are not allowed to
change anything above the PARTS statement.

In the Eq3 example, it so happens that the first two inputs of the Eq3 chip
and the two inputs of the Xor and Or chip-parts have the same names (a and
b). Likewise, the output of the Eq3 chip and that of the Not chip-part happen
to have the same name (out). This leads to bindings like  and 
Such bindings may look peculiar, but they occur frequently in HDL
programs, and one gets used to them. Later in the appendix we’ll give a
simple rule that clarifies the meaning of these bindings.

Importantly, the programmer need not worry about how chip-parts are
implemented. The chip-parts are used like black box abstractions, allowing
the programmer to focus only on how to arrange them judiciously in order



to realize the chip function. Thanks to this modularity, HDL programs can
be kept short, readable, and amenable to unit testing.

HDL-based chips like Eq3.hdl can be tested by a computer program called
hardware simulator. When we instruct the simulator to evaluate a given
chip, the simulator evaluates all the chip-parts specified in its PARTS section.
This, in turn, requires evaluating their lower-level chip-parts, and so on.
This recursive descent can result in a huge hierarchy of downward-
expanding chip-parts, all the way down to the terminal Nand gates from
which all chips are made. This expensive drill-down can be averted using
built-in chips, as we’ll explain shortly.

HDL is a declarative language: HDL programs can be viewed as textual
specifications of chip diagrams. For each chip chipName that appears in the
diagram, the programmer writes a chipName (…) statement in the HDL
program’s PARTS section. Since the language is designed to describe
connections rather than processes, the order of the PARTS statements is
insignificant: as long as the chip-parts are connected correctly, the chip will
function as stated. The fact that HDL statements can be reordered without
affecting the chip’s behavior may look odd to readers who are used to
conventional programming. Remember: HDL is not a programming
language; it’s a specification language.

White space, comments, case conventions: HDL is case-sensitive: foo and
Foo represent two different things. HDL keywords are written in uppercase
letters. Space characters, newline characters, and comments are ignored.
The following comment formats are supported:

Pins: HDL programs feature three types of pins: input pins, output pins, and
internal pins. The latter pins serve to connect outputs of chip-parts to inputs
of other chip-parts. Pins are assumed by default to be single-bit, carrying 0
or 1 values. Multi-bit bus pins can also be declared and used, as described
later in this appendix.



Names of chips and pins may be any sequence of letters and digits not
starting with a digit (some hardware simulators disallow using hyphens). By
convention, chip and pin names start with a capital letter and a lowercase
letter, respectively. For readability, names can include uppercase letters, for
example, xorResult. HDL programs are stored in .hdl files. The name of the
chip declared in the HDL statement CHIP Xxx must be identical to the prefix
of the file name Xxx.hdl.

Program structure: An HDL program consists of an interface and an
implementation. The interface consists of the chip’s API documentation,
chip name, and names of its input and output pins. The implementation
consists of the statements below the PARTS keyword. The overall program
structure is as follows:

Parts: The chip implementation is an unordered sequence of chip-part
statements, as follows:

Each connection is specified using the binding  where pin1 and
pin2 are input, output, or internal pin names. These connections can be
visualized as “wires” that the HDL programmer creates and names, as
needed. For each “wire” connecting chipPart1 and chipPart2 there is an
internal pin that appears twice in the HDL program: once as a sink in some



chipPart1(…) statement, and once as a source in some other chipPart2 (…)
statement. For example, consider the following statements:

Pins have fan-in 1 and unlimited fan-out. This means that a pin can be fed
from a single source only, yet it can feed (through multiple connections)
one or more pins in one or more chip-parts. In the above example, the
internal pin v simultaneously feeds three inputs. This is the HDL equivalent
of forks in chip diagrams.

The meaning of a = a: Many chips in the Hack platform use the same pin
names. As shown in figure A2.1, this leads to statements like Xor

 The first two connections feed the a and b inputs of the
implemented chip (Eq3) into the a and b inputs of the Xor chip-part. The third
connection feeds the out output of the Xor chip-part to the internal pin neq1.
Here is a simple rule that helps sort things out: In every chip-part statement,
the left side of each = binding always denotes an input or output pin of the
chip-part, and the right side always denotes an input, output, or internal pin
of the implemented chip.

A2.2    Multi-Bit Buses

Each input, output, or internal pin in an HDL program may be either a
single-bit value, which is the default, or a multi-bit value, referred to as a
bus.

Bit numbering and bus syntax: Bits are numbered from right to left,
starting with 0. For example, sel=110, implies that sel[2]=1, sel[1]=1, and
sel[0]=0.



Input and output bus pins: The bit widths of these pins are specified when
they are declared in the chip’s IN and OUT statements. The syntax is x[n],
where x and n declare the pin’s name and bit width, respectively.

Internal bus pins: The bit widths of internal pins are deduced implicitly
from the bindings in which they are declared, as follows,

where x is an input or output pin of the chip-part. The first binding defines u
to be a single-bit internal pin and sets its value to x[i]. The second binding
defines v to be an internal bus-pin of width  bits and sets its value to
the bits indexed i to j (inclusive) of bus-pin x.

Unlike input and output pins, internal pins (like u and v) may not be
subscripted. For example, u[i] is not allowed.

True/false buses: The constants true (1) and false (0) may also be used to
define buses. For example, suppose that x is an 8-bit bus-pin, and consider
this statement:

This statement sets x to the value 11000111. Note that unaffected bits are set
by default to false (0). Figure A2.2 gives another example.



Figure A2.2    Buses in action (example).

A2.3    Built-In Chips

Chips can have either a native implementation, written in HDL, or a built-in
implementation, supplied by an executable module written in a high-level
programming language. Since the Nand to Tetris hardware simulator was
written in Java, it was convenient to realize the built-in chips as Java
classes. Thus, before building, say, a Mux chip in HDL, the user can load a
built-in Mux chip into the hardware simulator and experiment with it. The
behavior of the built-in Mux chip is supplied by a Java class file named
Mux.class, which is part of the simulator’s software.

The Hack computer is made from about thirty generic chips, listed in
appendix 4. Two of these chips, Nand and DFF, are considered given, or
primitive, akin to axioms in logic. The hardware simulator realizes given
chips by invoking their built-in implementations. Therefore, in Nand to
Tetris, Nand and DFF can be used without building them in HDL.

Projects 1, 2, 3, and 5 evolve around building HDL implementations of
the remaining chips listed in appendix 4. All these chips, except for the CPU
and Computer chips, also have built-in implementations. This was done in
order to facilitate behavioral simulation, as explained in chapter 1.

The built-in chips—a library of about thirty chipName.class files—are
supplied in the nand2tetris/tools/builtInChips folder in your computer. Built-in
chips have HDL interfaces identical to those of regular HDL chips.



Therefore, each .class file is accompanied by a corresponding .hdl file that
provides the built-in chip interface. Figure A2.3 shows a typical HDL
definition of a built-in chip.

Figure A2.3    Built-in chip definition example.

It’s important to remember that the supplied hardware simulator is a
general-purpose tool, whereas the Hack computer built in Nand to Tetris is
a specific hardware platform. The hardware simulator can be used for
building gates, chips, and platforms that have nothing to do with Hack.
Therefore, when discussing the notion of built-in chips, it helps to broaden
our perspective and describe their general utility for supporting any possible
hardware construction project. In general, then, built-in chips provide the
following services:

Foundation: Built-in chips can provide supplied implementations of chips
that are considered given, or primitive. For example, in the Hack computer,
Nand and DFF are given.

Efficiency: Some chips, like RAM units, consist of numerous lower-level
chips. When we use such chips as chip-parts, the hardware simulator has to
evaluate them. This is done by evaluating, recursively, all the lower-level
chips from which they are made. This results in slow and inefficient
simulation. The use of built-in chip-parts instead of regular, HDL-based
chips speeds up the simulation considerably.

Unit testing: HDL programs use chip-parts abstractly, without paying
attention to their implementation. Therefore, when building a new chip, it is



always recommended to use built-in chip-parts. This practice improves
efficiency and minimizes errors.

Visualization: If the designer wants to allow users to “see” how chips
work, and perhaps change the internal state of the simulated chip
interactively, he or she can supply a built-in chip implementation that
features a graphical user interface. This GUI will be displayed whenever the
built-in chip is loaded into the simulator or invoked as a chip-part. Except
for these visual side effects, GUI-empowered chips behave, and can be
used, just like any other chip. Section A2.5 provides more details about
GUI-empowered chips.

Extension: If you wish to implement a new input/output device or create a
new hardware platform altogether (other than Hack), you can support these
constructions with built-in chips. For more information about developing
additional or new functionality, see chapter 13.

A2.4    Sequential Chips

Chips can be either combinational or sequential. Combinational chips are
time independent: they respond to changes in their inputs instantaneously.
Sequential chips are time dependent, also called clocked: when a user or a
test script changes the inputs of a sequential chip, the chip outputs may
change only at the beginning of the next time unit, also called a cycle. The
hardware simulator effects the progression of time using a simulated clock.

The clock: The simulator’s two-phase clock emits an infinite sequence of
values denoted  and so on. The progression of this
discrete time series is controlled by two simulator commands called tick and
tock. A tick moves the clock value from t to , and a tock from  to 
bringing upon the next time unit. The real time that elapsed during this
period is irrelevant for simulation purposes, since the simulated time is
controlled by the user, or by a test script, as follows.

First, whenever a sequential chip is loaded into the simulator, the GUI
enables a clock-shaped button (dimmed when simulating combinational



chips). One click on this button (a tick) ends the first phase of the clock
cycle, and a subsequent click (a tock) ends the second phase of the cycle,
bringing on the first phase of the next cycle, and so on.

Alternatively, one can run the clock from a test script. For example, the
sequence of scripting commands repeat n {tick, tock, output} instructs the
simulator to advance the clock n time units and to print some values in the
process. Appendix 3 documents the Test Description Language (TDL) that
features these commands.

The two-phased time units generated by the clock regulate the operations
of all the sequential chip-parts in the implemented chip. During the first
phase of the time unit (tick), the inputs of each sequential chip-part affect the
chip’s internal state, according to the chip logic. During the second phase of
the time unit (tock), the chip outputs are set to the new values. Hence, if we
look at a sequential chip “from the outside,” we see that its output pins
stabilize to new values only at tock—at the point of transition between two
consecutive time units.

We reiterate that combinational chips are completely oblivious to the
clock. In Nand to Tetris, all the logic gates and chips built in chapters 1–2,
up to and including the ALU, are combinational. All the registers and
memory units built in chapter 3 are sequential. By default, chips are
combinational; a chip can become sequential explicitly or implicitly, as
follows.

Sequential, built-in chips: A built-in chip can declare its dependence on
the clock explicitly, using the statement,

where each pin is one of the chip’s input or output pins. The inclusion of an
input pin x in the CLOCKED list stipulates that changes to x should affect the
chip’s outputs only at the beginning of the next time unit. The inclusion of
an output pin x in the CLOCKED list stipulates that changes in any of the
chip’s inputs should affect x only at the beginning of the next time unit.
Figure A2.4 presents the definition of the most basic, built-in, sequential
chip in the Hack platform—the DFF.



Figure A2.4    DFF definition.

It is possible that only some of the input or output pins of a chip are
declared as clocked. In that case, changes in the non-clocked input pins
affect the non-clocked output pins instantaneously. That’s how the address
pins are implemented in RAM units: the addressing logic is combinational
and independent of the clock.

It is also possible to declare the CLOCKED keyword with an empty list of
pins. This statement stipulates that the chip may change its internal state
depending on the clock, but its input-output behavior will be combinational,
independent of the clock.

Sequential, composite chips: The CLOCKED property can be defined
explicitly only in built-in chips. How, then, does the simulator know that a
given chip-part is sequential? If the chip is not built-in, then it is said to be
clocked when one or more of its chip-parts is clocked. The clocked property
is checked recursively, all the way down the chip hierarchy, where a built-in
chip may be explicitly clocked. If such a chip is found, it renders every chip
that depends on it (up the hierarchy) “clocked.” Therefore, in the Hack
computer, all the chips that include one or more DFF chip-parts, either
directly or indirectly, are clocked.

We see that if a chip is not built-in, there is no way to tell from its HDL
code whether it is sequential or not. Best-practice advice: The chip architect
should provide this information in the chip API documentation.

Feedback loops: If the input of a chip feeds from one of the chip’s outputs,
either directly or through a (possibly long) path of dependencies, we say



that the chip contains a feedback loop. For example, consider the following
two chip-part statements:

In both examples, an internal pin (loop1 or loop2) attempts to feed the chip’s
input from its output, creating a feedback loop. The difference between the
two examples is that Not is a combinational chip, whereas DFF is sequential.
In the Not example, loop1 creates an instantaneous and uncontrolled
dependency between in and out, sometimes called a data race. In contrast, in
the DFF case, the in-out dependency created by loop2 is delayed by the clock,
since the in input of the DFF is declared clocked. Therefore, out(t) is not a
function of in(t) but rather of in(t - 1).

When the simulator evaluates a chip, it checks recursively whether its
various connections entail feedback loops. For each loop, the simulator
checks whether the loop goes through a clocked pin somewhere along the
way. If so, the loop is allowed. Otherwise, the simulator stops processing
and issues an error message. This is done to prevent uncontrolled data
races.

A2.5    Visualizing Chips

Built-in chips may be GUI empowered. These chips feature visual side
effects designed to animate some of the chip operations. When the
simulator evaluates a GUI-empowered chip-part, it displays a graphical
image on the screen. Using this image, which may include interactive
elements, the user can inspect the chip’s current state or change it. The
permissible GUI-empowered actions are determined, and made possible, by
the developer of the built-in chip implementation.

The present version of the hardware simulator features the following
GUI-empowered, built-in chips:



ALU: Displays the Hack ALU’s inputs, output, and the presently computed
function.

Registers (ARegister, DRegister, PC): Displays the register’s contents, which
may be modified by the user.

RAM chips: Displays a scrollable, array-like image that shows the contents
of all the memory locations, which may be modified by the user. If the
contents of a memory location change during the simulation, the respective
entry in the GUI changes as well.

ROM chip (ROM32K): Same array-like image as that of RAM chips, plus
an icon that enables loading a machine language program from an external
text file. (The ROM32K chip serves as the instruction memory of the Hack
computer.)

Screen chip: Displays a 256-rows-by-512-columns window that simulates
the physical screen. If, during a simulation, one or more bits in the RAM-
resident screen memory map change, the respective pixels in the screen GUI
change as well. This continuous refresh loop is embedded in the simulator
implementation.

Keyboard chip: Displays a keyboard icon. Clicking this icon connects the
real keyboard of your computer to the simulated chip. From this point on,
every key pressed on the real keyboard is intercepted by the simulated chip,
and its binary code appears in the RAM-resident keyboard memory map. If
the user moves the mouse focus to another area in the simulator GUI, the
control of the keyboard is restored to the real computer.

Figure A2.5 presents a chip that uses three GUI empowered chip-parts.
Figure A2.6 shows how the simulator handles this chip. The GUIDemo chip
logic feeds its in input into two destinations: register number address in the
RAM16K chip-part, and register number address in the Screen chip-part. In
addition, the chip logic feeds the out values of its three chip-parts to the
“dead-end” internal pins a, b, and c. These meaningless connections are
designed for one purpose only: illustrating how the simulator deals with
built-in, GUI-empowered chip-parts.



Figure A2.5    A chip that activates GUI-empowered chip-parts.

Figure A2.6    GUI-empowered chips demo. Since the loaded HDL program uses GUI-empowered
chip-parts (step 1), the simulator renders their respective GUI images (step 2). When the user
changes the values of the chip input pins (step 3), the simulator reflects these changes in the
respective GUIs (step 4).

Note how the changes effected by the user (step 3) impact the screen
(step 4). The circled horizontal line shown on the screen is the visual side
effect of storing –1 in memory location 5012. Since the 16-bit two’s
complement binary code of –1 is 1111111111111111, the computer draws 16
pixels starting at column 320 of row 156, which happen to be the screen



coordinates associated with RAM address 5012. The mapping of memory
addresses on (row, column) screen coordinates is specified in chapter 4
(section 4.2.5).

A2.6    HDL Survival Guide

This section provides practical tips about how to develop chips in HDL
using the supplied hardware simulator. The tips are listed in no particular
order. We recommend reading this section once, beginning to end, and then
consulting it as needed.

Chip: Your nand2tetris/projects folder includes thirteen subfolders, named 01,
02, …, 13 (corresponding to the relevant chapter numbers). The hardware
project folders are 01, 02, 03, and 05. Each hardware project folder contains a
set of supplied HDL stub files, one for each chip that you have to build. The
supplied HDL files contain no implementations; building these
implementations is what the project is all about. If you do not build these
chips in the order in which they are described in the book, you may run into
difficulties. For example, suppose that you start project 1 by building the
Xor chip. If your Xor.hdl implementation includes, say, And and Or chip-
parts, and you have not yet implemented And.hdl and Or.hdl, your Xor.hdl
program will not work even if its implementation is perfectly correct.

Note, however, that if the project folder included no And.hdl and Or.hdl
files, your Xor.hdl program will work properly. The hardware simulator,
which is a Java program, features built-in implementations of all the chips
necessary to build the Hack computer (with the exception of the CPU and
Computer chips). When the simulator evaluates a chip-part, say And, it looks
for an And.hdl file in the current folder. At this point there are three
possibilities:

No HDL file is found. In this case, the built-in implementation of the chip
kicks in, covering for the missing HDL implementation.
A stub HDL file is found. The simulator tries to execute it. Failing to find
an implementation, the execution fails.



An HDL file is found, with an HDL implementation. The simulator
executes it, reporting errors, if any, to the best of its ability.

Best-practice advice: You can do one of two things. Try to implement the
chips in the order presented in the book and in the project descriptions.
Since the chips are discussed bottom-up, from basic chips to more complex
ones, you will encounter no chip order implementation troubles—provided,
of course, that you complete each chip implementation correctly before
moving on to implement the next one.

A recommended alternative is to create a subfolder named, say, stubs, and
move all the supplied .hdl stub files into it. You can then move each stub file
that you want to work on into your working folder, one by one. When you
are done implementing a chip successfully, move it into, say, a completed
subfolder. This practice forces the simulator to always use built-in chips,
since the working folder includes only the .hdl file that you are working on
(as well as the supplied .tst and .cmp files).

HDL files and test scripts: The .hdl file that you are working on and its
associated .tst test script file must be located in the same folder. Each
supplied test script starts with a load command that loads the .hdl file that it
is supposed to test. The simulator always looks for this file in the current
folder.

In principle, the simulator’s File menu allows the user to load,
interactively, both an .hdl file and a .tst script file. This can create potential
problems. For example, you can load the .hdl file that you are working on
into the simulator, and then load a test script from another folder. When you
execute the test script, it may well load a different version of the HDL
program into the simulator (possibly, a stub file). When in doubt, inspect
the pane named HDL in the simulator GUI to check which HDL code is
presently loaded. Best-practice advice: Use the simulator’s File menu to load
either an .hdl file or a .tst file, but not both.

Testing chips in isolation: At some point you may become convinced that
your chip is correct, even though it is still failing the test. Indeed, it is
possible that the chip is perfectly implemented, but one of its chip-parts is
not. Also, a chip that passed its test successfully may fail when used as a



chip-part by another chip. One of the biggest inherent limitations of
hardware design is that test scripts—especially those that test complex
chips—cannot guarantee that the tested chip will operate perfectly in all
circumstances.

The good news is that you can always diagnose which chip-part is
causing the problem. Create a test subfolder and copy into it only the three
.hdl, .tst, and .out files related to the chip that you are presently building. If
your chip implementation passes its test in this subfolder as is (letting the
simulator use the default built-in chip-parts), there must be a problem with
one of your chip-part implementations, that is, with one of the chips that
you built earlier in this project. Copy the other chips into this test folder,
one by one, and repeat the test until you find the problematic chip.

HDL syntax errors: The hardware simulator displays errors on the bottom
status bar. On computers with small screens, these messages are sometimes
off the bottom of the screen, not visible. If you load an HDL program and
nothing shows up in the HDL pane, but no error message is seen, this may be
the problem. Your computer should have a way to move the window, using
the keyboard. For example, on Windows use Alt+Space, M, and the arrow
keys.

Unconnected pins: The hardware simulator does not consider unconnected
pins to be errors. By default, it sets any unconnected input or output pin to
false (binary value 0). This can cause mysterious errors in your chip
implementations.

If an output pin of your chip is always 0, make sure that it is properly
connected to another pin in your program. In particular, double-check the
names of the internal pins (“wires”) that feed this pin, either directly or
indirectly. Typographic errors are particularly hazardous here, since the
simulator doesn’t throw errors on disconnected wires. For example,
consider the statement Foo(…, sum=sun), where the sum output of Foo is
supposed to pipe its value to an internal pin. Indeed, the simulator will
happily create an internal pin named sun. Now, if sum’s value was supposed
to feed the output pin of the implemented chip, or the input pin of another
chip-part, this pin will in fact be 0, always, since nothing will be piped from
Foo onward.



To recap, if an output pin is always 0, or if one of the chip-parts does not
appear to be working correctly, check the spelling of all the relevant pin
names, and verify that all the input pins of the chip-part are connected.

Customized testing: For every chip.hdl file that you have to complete your
project folder also includes a supplied test script, named chip.tst, and a
compare file, named chip.cmp. Once your chip starts generating outputs,
your folder will also include an output file named chip.out. If your chip fails
the test script, don’t forget to consult the .out file. Inspect the listed output
values, and seek clues to the failure. If for some reason you can’t see the
output file in the simulator GUI, you can always inspect it using a text
editor.

If you want, you can run tests of your own. Copy the supplied test script
to, say, MyTestChip.tst, and modify the script commands to gain more
insight into your chip’s behavior. Start by changing the name of the output
file in the output-file line and deleting the compare-to line. This will cause the
test to always run to completion (by default, the simulation stops when an
output line disagrees with the corresponding line in the compare file).
Consider modifying the output-list line to show the outputs of your internal
pins.

Appendix 3 documents the Test Description Language (TDL) that
features all these commands.

Sub-busing (indexing) internal pins: This is not permitted. The only bus-
pins that can be indexed are the input and output pins of the implemented
chip or the input and output pins of its chip-parts. However, there is a
workaround for sub-busing internal bus-pins. To motivate the work-around,
here is an example that doesn’t work:



Possible fix, using the work-around:

Multiple outputs: Sometimes you need to split the multi-bit value of a bus-
pin into two buses. This can be done by using multiple out= bindings.

For example:

Sometimes you may want to output a value and also use it for further
computations. This can be done as follows:

Chip-parts “auto complete” (sort of): The signatures of all the chips
mentioned in this book are listed in appendix 4, which also has a web-based
version (at www.nand2tetris.org). To use a chip-part in a chip
implementation, copy-paste the chip signature from the online document
into your HDL program, then fill in the missing bindings. This practice
saves time and minimizes typing errors.

http://www.nand2tetris.org/


 

Appendix 3: Test Description
Language

Mistakes are the portals of discovery.
—James Joyce (1882–1941)

Testing is a critically important element of systems development, and one
that typically gets insufficient attention in computer science education. In
Nand to Tetris we take testing very seriously. We believe that before one
sets out to develop a new hardware or software module P, one must first
develop a module T designed to test it. Further, T should be part of P’s
development’s contract. Therefore, for every chip or software system
specified in this book, we supply official test programs, written by us.
Although you are welcome to test your work in any way you see fit, the
contract is such that, ultimately, your implementation must pass our tests.

In order to streamline the definition and execution of the numerous tests
scattered all over the book projects, we designed a uniform test description
language. This language works almost the same across all the relevant tools
supplied in Nand to Tetris: the hardware simulator used for simulating and
testing chips written in HDL, the CPU emulator used for simulating and
testing machine language programs, and the VM emulator used for
simulating and testing programs written in the VM language, which are
typically compiled Jack programs.

Every one of these simulators features a GUI that enables testing the
loaded chip or program interactively, or batch-style, using a test script. A
test script is a sequence of commands that load a hardware or software
module into the relevant simulator and subject the module to a series of
preplanned testing scenarios. In addition, the test scripts feature commands



for printing the test results and comparing them to desired results, as
defined in supplied compare files. In sum, a test script enables a systematic,
replicable, and documented testing of the underlying code—an invaluable
requirement in any hardware or software development project.

In Nand to Tetris, we don’t expect learners to write test scripts. All the
test scripts necessary to test all the hardware and software modules
mentioned in the book are supplied with the project materials. Thus, the
purpose of this appendix is not to teach you how to write test scripts but
rather to help you understand the syntax and logic of the supplied test
scripts. Of course, you are welcome to customize the supplied scripts and
create new ones, as you please.

A3.1    General Guidelines

The following usage guidelines are applicable to all the software tools and
test scripts.

File format and usage: The act of testing a hardware or software module
involves four types of files. Although not required, we recommend that all
four files have the same prefix (file name):

Xxx.yyy: where Xxx is the name of the tested module and yyy is either hdl,
hack, asm, or vm, standing, respectively, for a chip definition written in
HDL, a program written in the Hack machine language, a program
written in the Hack assembly language, or a program written in the VM
virtual machine language

Xxx.tst: a test script that walks the simulator through a series of steps
designed to test the code stored in Xxx

Xxx.out: an optional output file to which the script commands can write
current values of selected variables during the simulation

Xxx.cmp: an optional compare file containing the desired values of selected
variables, that is, the values that the simulation should generate if the
module is implemented correctly



All these files should be kept in the same folder, which can be conveniently
named Xxx. In the documentation and descriptions of all the simulators, the
term “current folder” refers to the folder from which the last file has been
opened in the simulator environment.

White space: Space characters, newline characters, and comments in test
scripts (Xxx.tst files) are ignored. The following comment formats can
appear in test scripts:

Test scripts are not case-sensitive, except for file and folder names.

Usage: For each hardware or software module Xxx in Nand to Tetris we
supply a script file Xxx.tst and a compare file Xxx.cmp. These files are
designed to test your implementation of Xxx. In some cases, we also supply
a skeletal version of Xxx, for example, an HDL interface with a missing
implementation. All the files in all the projects are plain text files that
should be viewed and edited using plain text editors.

Typically, you will start a simulation session by loading the supplied
Xxx.tst script file into the relevant simulator. The first command in the script
typically loads the code stored in the tested module Xxx. Next, optionally,
come commands that initialize an output file and specify a compare file.
The remaining commands in the script run the actual tests.

Simulation controls: Each one of the supplied simulators features a set of
menus and icons for controlling the simulation.

File menu: Allows loading into the simulator either a relevant program (.hdl
file, .hack file, .asm file, .vm file, or a folder name) or a test script (.tst file).
If the user does not load a test script, the simulator loads a default test
script (described below).

Play icon: Instructs the simulator to execute the next simulation step, as
specified in the currently loaded test script.



Pause icon: Instructs the simulator to pause the execution of the currently
loaded test script. Useful for inspecting various elements of the
simulated environment.

Fast-forward icon: Instructs the simulator to execute all the commands in the
currently loaded test script.

Stop icon: Instructs the simulator to stop the execution of the currently
loaded test script.

Rewind icon: Instructs the simulator to reset the execution of the currently
loaded test script, that is, be ready to start executing the test script from
its first command onward.

Note that the simulator’s icons listed above don’t “run the code.” Rather,
they run the test script, which runs the code.

A3.2    Testing Chips on the Hardware Simulator

The supplied hardware simulator is designed for testing and simulating chip
definitions written in the Hardware Description Language (HDL) described
in appendix 2. Chapter 1 provides essential background on chip
development and testing; thus, we recommend reading it first.

Example: Figure A2.1 in appendix 2 presents an Eq3 chip, designed to
check whether three 1-bit inputs are equal. Figure A3.1 presents Eq3.tst, a
script designed to test the chip, and Eq3.cmp, a compare file containing the
expected output of this test.



Figure A3.1    Test script and compare file (example).

A test script normally starts with some setup commands, followed by a
series of simulation steps, each ending with a semicolon. A simulation step
typically instructs the simulator to bind the chip’s input pins to test values,
evaluate the chip logic, and write selected variable values into a designated
output file.

The Eq3 chip has three 1-bit inputs; thus, an exhaustive test would require
eight testing scenarios. The size of an exhaustive test grows exponentially
with the input size. Therefore, most test scripts test only a subset of
representative input values, as shown in the figure.

Data types and variables: Test scripts support two data types: integers and
strings. Integer constants can be expressed in decimal (%D prefix) format,
which is the default, binary (%B prefix) format, or hexadecimal (%X prefix)
format. These values are always translated into their equivalent two’s
complement binary values. For example, consider the following commands:

All four variables are set to the same value: 1111111111111111 in binary, which
happens to be the binary, two’s complement representation of  in decimal.



String values are specified using a %S prefix and must be enclosed by
double quotation marks. Strings are used strictly for printing purposes and
cannot be assigned to variables.

The hardware simulator’s two-phase clock (used only in testing
sequential chips) emits a series of values denoted  and so
on. The progression of these clock cycles (also called time units) can be
controlled by two script commands named tick and tock. A tick moves the
clock value from t to , and a tock from  to bringing upon the next
time unit. The current time unit is stored in a system variable named time,
which is read-only.

Script commands can access three types of variables: pins, variables of
built-in chips, and the system variable time.

Pins: input, output, and internal pins of the simulated chip (for example, the
command set in 0 sets the value of the pin whose name is in to 0)

Variables of built-in chips: exposed by the chip’s external implementation
(see figure A3.2.)

Figure A3.2    Variables and methods of key built-in chips in Nand to Tetris.

time: the number of time-units that elapsed since the simulation started (a
read-only variable)



Script commands: A script is a sequence of commands. Each command is
terminated by a comma, a semicolon, or an exclamation mark. These
terminators have the following semantics:

Comma (,): Terminates a script command.
Semicolon (;): Terminates a script command and a simulation step. A

simulation step consists of one or more script commands. When the user
instructs the simulator to single-step using the simulator’s menu or play
icon, the simulator executes the script from the current command until a
semicolon is reached, at which point the simulation is paused.

Exclamation mark (!): Terminates a script command and stops the script
execution. The user can later resume the script execution from that point
onward. Typically used for debugging purposes.

Below we group the script commands in two conceptual sections: setup
commands, used for loading files and initializing settings, and simulation
commands, used for walking the simulator through the actual tests.

Setup Commands

load Xxx.hdl: Loads the HDL program stored in Xxx.hdl into the simulator.
The file name must include the .hdl extension and must not include a path
specification. The simulator will try to load the file from the current folder
and, failing that, from the tools/builtInChips folder.

output-file Xxx.out: Instructs the simulator to write the results of the output
commands in the named file, which must include an .out extension. The
output file will be created in the current folder.

output-list v1, v2, …: Specifies what to write to the output file when the
output command is encountered in the script (until the next output-list
command, if any). Each value in the list is a variable name followed by a
formatting specification. The command also produces a single header line,
consisting of the variable names, which is written to the output file. Each
item v in the output-list has the syntax varName format padL.len.padR
(without any spaces). This directive instructs the simulator to write padL
space characters, then the current value of the variable varName, using the



specified format and len columns, then padR spaces, and finally the divider
symbol |. The format can be either %B (binary), %X (hexa), %D (decimal), or
%S (string). The default format is %B1.1.1.

For example, the CPU.hdl chip of the Hack platform has an input pin
named reset, an output pin named pc (among others), and a chip-part named
DRegister (among others). If we want to track the values of these entities
during the simulation, we can use something like the following command:

(State variables of built-in chips are explained below). This output-list
command may end up producing the following output, after two subsequent
output commands:

compare-to Xxx.cmp: Specifies that the output line generated by each
subsequent output command should be compared to its corresponding line in
the specified compare file (which must include the .cmp extension). If any
two lines are not the same, the simulator displays an error message and
halts the script execution. The compare file is assumed to be present in the
current folder.

Simulation Commands

set varName value: Assigns the value to the variable. The variable is either
a pin or an internal variable of the simulated chip or one of its chip-parts.
The bit widths of the value and the variable must be compatible.



eval: Instructs the simulator to apply the chip logic to the current values of
the input pins and compute the resulting output values.

output: Causes the simulator to go through the following logic:

1. Get the current values of all the variables listed in the last output-list
command.

2. Create an output line using the format specified in the last output-list
command.

3. Write the output line to the output file.
4. (If a compare file has been previously declared using a compare-to

command): If the output line differs from the compare file’s current line,
display an error message and stop the script’s execution.

5. Advance the line cursors of the output file and the compare file.

tick: Ends the first phase of the current time unit (clock cycle).

tock: Ends the second phase of the current time unit and embarks on the first
phase of the next time unit.

repeat n {commands}: Instructs the simulator to repeat the commands
enclosed in the curly brackets n times. If n is omitted, the simulator repeats
the commands until the simulation has been stopped for some reason (for
example, when the user clicks the Stop icon).

while booleanCondition {commands}: Instructs the simulator to repeat the
commands enclosed in the curly brackets as long as the booleanCondition is
true. The condition is of the form x op y where x and y are either constants
or variable names and op is =, >, <, >=, <=, or < >. If x and y are strings, op
can be either = or < >.

echo text: Displays the text in the simulator status line. The text must be
enclosed in double quotation marks.

clear-echo: Clears the simulator’s status line.



breakpoint varName value: Starts comparing the current value of the
specified variable to the specified value following the execution of each
subsequent script command. If the variable contains the specified value, the
execution halts and a message is displayed. Otherwise, the execution
continues normally. Useful for debugging purposes.

clear-breakpoints: Clears all the previously defined breakpoints.

builtInChipName method argument (s): Executes the specified method of
the specified built-in chip-part using the supplied arguments. The designer
of a built-in chip can provide methods that allow the user (or a test script) to
manipulate the simulated chip. See figure A3.2.

Variables of built-in chips: Chips can be implemented either by HDL
programs or by externally supplied executable modules. In the latter case,
the chip is said to be built-in. built-in chips can facilitate access to the chip’s
state using the syntax chipName[varName], where varName is an
implementation-specific variable that should be documented in the chip
API. See figure A3.2.

For example, consider the script command set RAM16K[1017] 15. If RAM16K
is the currently simulated chip, or a chip-part of the currently simulated
chip, this command sets its memory location number 1017 to 15. And, since
the built-in RAM16K chip happens to have GUI side effects, the new value
will also be reflected in the chip’s visual image.

If a built-in chip maintains a single-valued internal state, the current
value of the state can be accessed through the notation chipName[]. If the
internal state is a vector, the notation chipName[i] is used. For example,
when simulating the built-in Register chip, one can write script commands
like set Register[] 135. This command sets the internal state of the chip to 135;
in the next time unit, the Register chip will commit to this value, and its
output pin will start emitting it.

Methods of built-in chips: Built-in chips can also expose methods that can
be used by scripting commands. For example, in the Hack computer,
programs reside in an instruction memory unit implemented by the built-in
chip ROM32K. Before running a machine language program on the Hack



computer, the program must be loaded into this chip. To facilitate this
service, the built-in implementation of ROM32K features a load method that
enables loading a text file containing machine language instructions. This
method can be accessed using a script command like ROM32K load
fileName.hack.

Ending example: We end this section with a relatively complex test script
designed to test the topmost Computer chip of the Hack computer.

One way to test the Computer chip is to load a machine language program
into it and monitor selected values as the computer executes the program,
one instruction at a time. For example, we wrote a machine language
program that computes the maximum of RAM[0] and RAM[1] and writes the
result in RAM[2]. The program is stored in a file named Max.hack.

Note that at the low level in which we are operating, if such a program
does not run properly it may be either because the program is buggy or
because the hardware is buggy (or, perhaps, the test script is buggy, or the
hardware simulator is buggy). For simplicity, let us assume that everything
is error-free, except for, possibly, the simulated Computer chip.

To test the Computer chip using the Max.hack program, we wrote a test
script called ComputerMax.tst. This script loads Computer.hdl into the hardware
simulator and then loads the Max.hack program into its ROM32K chip-part. A
reasonable way to check whether the chip works properly is as follows: Put
some values in RAM[0] and RAM[1], reset the computer, run the clock enough
cycles, and inspect RAM[2]. This, in a nutshell, is what the script in figure
A3.3 is designed to do.



Figure A3.3    Testing the topmost Computer chip.

How can we tell that fourteen clock cycles are sufficient for executing
this program? This can be found by trial and error, by starting with a large
value and watching the computer’s outputs stabilizing after a while, or by
analyzing the run-time behavior of the loaded program.

Default test script: Each Nand to Tetris simulator features a default test
script. If the user does not load a test script into the simulator, the default
test script is used. The default test script of the hardware simulator is
defined as follows:

A3.3    Testing Machine Language Programs on the CPU
Emulator

Unlike the hardware simulator, which is a general-purpose program
designed to support the construction of any hardware platform, the supplied



CPU emulator is a single-purpose tool, designed to simulate the execution
of machine language programs on a specific platform: the Hack computer.
The programs can be written either in the symbolic or in the binary Hack
machine language described in chapter 4.

As usual, the simulation involves four files: the tested program (Xxx.asm
or Xxx.hack), a test script (Xxx.tst), an optional output file (Xxx.out), and an
optional compare file (Xxx.cmp). All these files reside in the same folder,
normally named Xxx.

Example: Consider the multiplication program Mult.hack, designed to effect 
. Suppose we want to test this program in the CPU

emulator. A reasonable way to do it is to put some values in RAM[0] and
RAM[1], run the program, and inspect RAM[2]. This logic is carried out by the
test script shown in figure A3.4.



Figure A3.4    Testing a machine language program on the CPU emulator.

Variables: Scripting commands running on the CPU emulator can access
the following elements of the Hack computer:



Commands: The CPU emulator supports all the commands described in
section A3.2, except for the following changes:

load progName: Where progName is either Xxx.asm or Xxx.hack. This
command loads a machine language program (to be tested) into the
simulated instruction memory. If the program is written in assembly, the
simulator translates it into binary, on the fly, as part of executing the load
programName command.

eval: Not applicable in the CPU emulator.
builtInChipName method argument (s): Not applicable in the CPU

emulator.
tickTock: This command is used instead of tick and tock. Each ticktock advances

the clock one time unit (cycle).

Default Test Script

A3.4    Testing VM Programs on the VM Emulator

The supplied VM emulator is a Java implementation of the virtual machine
specified in chapters 7–8. It can be used for simulating the execution of VM
programs, visualizing their operations, and displaying the states of the
effected virtual memory segments.

A VM program consists of one or more .vm files. Thus, the simulation of
a VM program involves the tested program (a single Xxx.vm file or an Xxx
folder containing one or more .vm files) and, optionally, a test script
(Xxx.tst), a compare file (Xxx.cmp), and an output file (Xxx.out). All these
files reside in the same folder, normally named Xxx.

Virtual memory segments: The VM commands push and pop are designed
to manipulate virtual memory segments (argument, local, and so on). These



segments must be allocated to the host RAM—a task that the VM emulator
carries out as a side effect of simulating the execution of the VM commands
call, function, and return.

Startup code: When the VM translator translates a VM program, it
generates machine language code that sets the stack pointer to 256 and then
calls the Sys.init function, which then initializes the OS classes and calls
Main.main. In a similar fashion, when the VM emulator is instructed to
execute a VM program (a collection of one or more VM functions), it is
programmed to start running the function Sys.init. If such a function is not
found in the loaded VM code, the emulator is programmed to start
executing the first command in the loaded VM code.

The latter convention was added to the VM emulator to support unit
testing of the VM translator, which spans two book chapters and projects. In
project 7, we build a basic VM translator that handles only push, pop, and
arithmetic commands without handling function calling commands. If we
want to execute such programs, we must somehow anchor the virtual
memory segments in the host RAM—at least those segments mentioned in
the simulated VM code. Conveniently, this initialization can be
accomplished by script commands that manipulate the pointers controlling
the base RAM addresses of the virtual segments. Using these script
commands, we can anchor the virtual segments anywhere we want in the
host RAM.

Example: The FibonacciSeries.vm file contains a sequence of VM commands
that compute the first n elements of the Fibonacci series. The code is
designed to operate on two arguments: n and the starting memory address in
which the computed elements should be stored. The test script listed in
figure A3.5 tests this program using the arguments 6 and 4000.



Figure A3.5    Testing a VM program on the VM emulator.

Variables: Scripting commands running on the VM emulator can access the
following elements of the virtual machine:

Contents of VM segments:

Pointers of VM segments:



Implementation-specific variables:

Commands: The VM emulator supports all the commands described in
Section A3.2, except for the following changes:

load source: Where the optional source parameter is either Xxx.vm, a file
containing VM code, or Xxx, the name of a folder containing one or more
.vm files (in which case all of them are loaded, one after the other). If the .vm
files are located in the current folder, the source argument can be omitted.

tick / tock: Not applicable.

vmstep: Simulates the execution of a single VM command and advances to
the next command in the code.

Default Script



 

Appendix 4: The Hack Chip Set

The chips are sorted alphabetically by name. In the online version of this
document, available in www.nand2tetris.org, this API format comes in
handy: To use a chip-part, copy-paste the chip signature into your HDL
program, then fill in the missing bindings (also called connections).

http://www.nand2tetris.org/




 

Appendix 5: The Hack Character Set





 

Appendix 6: The Jack OS API

The Jack language is supported by eight standard classes that provide basic
OS services like memory allocation, mathematical functions, input
capturing, and output rendering. This appendix documents the API of these
classes.

Math

This class provides commonly needed mathematical functions.

function int multiply(int x, int y): Returns the product of x and y. When a Jack
compiler detects the multiplication operator * in the program’s code, it
handles it by invoking this function. Thus the Jack expressions x * y and
the function call Math.multiply(x,y) return the same value.

function int divide(int x, int y): Returns the integer part of x / y. When a Jack
compiler detects the division operator / in the program’s code, it handles
it by invoking this function. Thus the Jack expressions x / y and the
function call Math.divide(x,y) return the same value.

function int min(int x, int y): Returns the minimum of x and y.
function int max(int x, int y): Returns the maximum of x and y.
function int sqrt(int x): Returns the integer part of the square root of x.

String



This class represents strings of char values and provides commonly needed
string processing services.

constructor String new(int maxLength): Constructs a new empty string with a
maximum length of maxLength and initial length of 0.

method void dispose(): Disposes this string.
method int length(): Returns the number of characters in this string.
method char charAt(int i): Returns the character at the i-th location of this string.
method void setCharAt(int i, char c): Sets the character at the i-th location of this

string to c.
method String appendChar(char c): Appends c to this string’s end and returns this

string.
method void eraseLastChar(): Erases the last character from this string.
method int intValue(): Returns the integer value of this string until a non-digit

character is detected.
method void setInt(int val): Sets this string to hold a representation of the given

value.
function char backSpace(): Returns the backspace character.
function char doubleQuote(): Returns the double quote character.
function char newLine(): Returns the newline character.

Array

In the Jack language, arrays are implemented as instances of the OS class
Array. Once declared, the array elements can be accessed using the syntax
arr[i]. Jack arrays are not typed: each array element can hold a primitive data
type or an object type, and different elements in the same array can have
different types.

function Array new(int size): Constructs a new array of the given size.
method void dispose(): Disposes this array.



Output

This class provides functions for displaying characters. It assumes a
character-oriented screen consisting of 23 rows (indexed 0…22, top to
bottom) of 64 characters each (indexed 0…63, left to right). The top-left
character location on the screen is indexed (0,0). Each character is
displayed by rendering on the screen a rectangular image 11 pixels high and
8 pixels wide (which includes margins for character spacing and line
spacing). If needed, the bitmap images (“font”) of all the characters can be
found by inspecting the given code of the Output class. A visible cursor,
implemented as a small filled square, indicates where the next character
will be displayed.

function void moveCursor(int i, int j): Moves the cursor to the j-th column of the i-
th row and overrides the character displayed there.

function void printChar(char c): Displays the character at the cursor location and
advances the cursor one column forward.

function void printString(String s): Displays the string starting at the cursor
location and advances the cursor appropriately.

function void printInt(int i): Displays the integer starting at the cursor location
and advances the cursor appropriately.

function void println(): Advances the cursor to the beginning of the next line.
function void backSpace(): Moves the cursor one column back.

Screen

This class provides functions for displaying graphical shapes on the screen.
The Hack physical screen consists of 256 rows (indexed 0…255, top to
bottom) of 512 pixels each (indexed 0…511, left to right). The top-left pixel
on the screen is indexed (0,0).

function void clearScreen(): Erases the entire screen.
function void setColor(boolean b): Sets the current color. This color will be used

in all the subsequent drawXxx function calls. Black is represented by true,



white by false.
function void drawPixel(int x, int y): Draws the (x,y) pixel using the current color.
function void drawLine(int x1, int y1, int x2, int y2): Draws a line from pixel (x1,y1) to

pixel (x2,y2) using the current color.
function void drawRectangle(int x1, int y1, int x2, int y2): Draws a filled rectangle

whose top-left corner is (x1,y1) and bottom-right corner is (x2,y2) using
the current color.

function void drawCircle(int x, int y, int r): Draws a filled circle of radius r ≤ 181
around (x,y) using the current color.

Keyboard

This class provides functions for reading inputs from a standard keyboard.

function char keyPressed(): Returns the character of the currently pressed key
on the keyboard; if no key is currently pressed, returns 0. Recognizes all
the values in the Hack character set (see appendix 5). These include the
characters newLine (128, return value of String.newLine()), backSpace (129,
return value of String.backSpace ()), leftArrow (130), upArrow (131), rightArrow
(132), downArrow (133), home (134), end (135), pageUp (136), pageDown
(137), insert (138), delete (139), esc (140), and f1–f12 (141–152).

function char readChar(): Waits until a keyboard key is pressed and released,
then displays the corresponding character on the screen and returns the
character.

function String readLine(String message): Displays the message, reads from the
keyboard the entered string of characters until a newLine character is
detected, displays the string, and returns the string. Also handles user
backspaces.

function int readInt(String message): Displays the message, reads from the
keyboard the entered string of characters until a newLine character is
detected, displays the string on the screen, and returns its integer value
until the first non-digit character in the entered string is detected. Also
handles user backspaces.



Memory

This class provides memory management services. The Hack RAM consists
of 32,768 words, each holding a 16-bit binary number.

function int peek(int address): Returns the value of RAM[address].
function void poke(int address, int value): Sets RAM[address] to the given value.
function Array alloc(int size): Finds an available RAM block of the given size and

returns its base address.
function void deAlloc(Array o): Deallocates the given object, which is cast as an

array. In other words, makes the RAM block that starts in this address
available for future memory allocations.

Sys

This class provides basic program execution services.

function void halt(): Halts the program execution.
function void error(int errorCode): Displays the error code, using the format

ERR<errorCode>, and halts the program’s execution.
function void wait(int duration): Waits approximately duration milliseconds and

returns.
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